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ABSTRACT

An important problem in hardware and software design is ensuring a designed

system is error-free. Even small errors in a computer system can have disastrous

consequences to a project, sometimes costing large amounts of money to correct, or

even leading to unexpected and catastrophic system failure.

There are a number of steps one can take to eliminate as many errors as

possible. We focus on a set of techniques known as formal methods that are used

in computer science to help ensure correct system behavior. In order to minimize

the potential for human error and to reduce the time and expertise needed, we seek

to use techniques that are highly automatable. We focus on one such approach,

an inductive variation of model checking that can be used to verify formally the

invariance of properties or produce counterexamples.

One class of systems of particular interest for verification are reactive sys-

tems. This is a class of systems that continuously react to their environment in a

timely manner. Reactive systems are pervasive in everyday life, ranging from simple

thermostats to the controls of nuclear power plants. As a representative language

to describe these systems, we look at an established specification and programming

language, Lustre.

We have developed a set of techniques based on inductive reasoning and Sat-

isfiability Modulo Theories (SMT) that are automatically able to prove invariant

properties of systems described in Lustre. These techniques involve the translation
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of a Lustre program and property into formulas of a suitable logic, and then the

application of k-induction with improvements such as path compression and abstrac-

tion/refinement. This process can be used to prove a property invariant or to provide

a concrete counterexample for it that can aid in correcting errors. While these tech-

niques individually have been applied to solve similar problems, we refine and combine

them in a novel way to deal effectively with Lustre-based systems with the aid of auto-

mated off-the-shelf SMT reasoners. We have implemented these techniques in a new

system, Kind, and can experimentally show this is an improvement over the current

state of the art.
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of a Lustre program and property into formulas of a suitable logic, and then the

application of k-induction with improvements such as path compression and abstrac-

tion/refinement. This process can be used to prove a property invariant or to provide

a concrete counterexample for it that can aid in correcting errors. While these tech-

niques individually have been applied to solve similar problems, we refine and combine

them in a novel way to deal effectively with Lustre-based systems with the aid of auto-

mated off-the-shelf SMT reasoners. We have implemented these techniques in a new

system, Kind, and can experimentally show this is an improvement over the current

state of the art.
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CHAPTER 1
MOTIVATION

1.1 Introduction

When engineers build a computer-based system, be it hardware or software, it

is highly desirable to ensure that it will reliably work as intended, with no errors or

undesirable side effects. Seemingly trivial errors can have deleterious consequences to

a project, sometimes costing large amounts of money to correct, or, if uncaught, even

leading to unexpected, complete system failure. The Denver International Airport,

for example, suffered from an improperly designed baggage system that was delayed

for nearly a year, with efforts to correct it supposedly costing more than the initial

cost of the project; to this day the automated luggage system is still not used as

intended [82]. The Ariane 5 rocket, flight 501, was destroyed shortly after liftoff,

along with approximately $500 million in payload due to a change in specifications

that resulted in a simple overflow error in its programming [30, 58]. A software error

also resulted in the loss of the NASA Mars Climate Orbiter in 1999 due to improp-

erly converting measurement scales between the Orbiter and the terrestrial control

station [59, 73]. Other errors can be represented as vulnerabilities to supposedly se-

cure systems, possibly resulting in expensive or reputation-damaging data loss. Such

examples clearly illustrate some of the potential dangers and costs of not catching

errors during a system’s development.

There are a number of additional steps one can take to eliminate as many
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errors as possible. We focus on a set of techniques known as formal methods that are

used in computer science to help ensure correct system behavior.

1.2 Formal Methods

The use of formal methods involve applying a variety of rigorous, logically

sound techniques to ensure correct behavior of a system.

A project in development will nearly always have problems at some point. It

has been shown that detecting and addressing these problems early in the development

cycle can provide significant overall cost savings. While it may seem cheaper or

quicker to patch errors after a product has shipped, this is rarely the case — for

example the Pentium FDIV led to Intel’s open offer to replace affected processors

[85]. Formal methods can be applied at nearly any stage in the development cycle,

from initial specification to final testing, and as such have additional chances to catch

bugs earlier.

For the purposes of this thesis, we are interested in software systems, and

more specifically in producing correct code, or code that conforms to a certain set of

specifications. These specifications are represented as a set of properties that a pro-

gram’s behavior must conform to. There are a number of formal method techniques

used to help ensure correct code is produced, ranging from specification guidelines to

annotations that may help ensure a fragment of code behaves properly, to detecting

bugs and proving that properties hold.

In order to minimize the potential for human error and to reduce the needed
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time and expertise involved, we seek to use formal method techniques that can be

(mostly) automated. Two such techniques are formal verification and the detection

and production of counterexamples.

The first such group of techniques, that of verification, involve mathematically

proving a system does or does not exhibit certain desired properties. The second, the

production of counterexamples, can provide a concrete example of the behavior of a

system that leads to a failure, something that can be extremely useful in correcting

errors.

Note that there are a number of ways to achieve these goals, with formal meth-

ods only being one possible solution. Another common, and orthogonal, approach is

traditional testing, where the examiner attempts to generate input/output pairs that

lead and demonstrate statistically that the system will behave as expected. This can

also produce counterexamples, but generally is unable to prove the correctness of a

system. Testing is only able to look at a finite number of specific input/output pairs,

and so effort is made to try to choose those likely to produce faults; the choices are

then used to actually run the system and the results observed. In the event of a

failure, the given input is a counterexample. Formal methods, on the other hand, de-

termine counterexamples as a byproduct of the verification process, as witnesses that

a property is not verified. Furthermore they are generally based on a static analysis

of the code using symbolic reasoning instead of direct processing of concrete inputs.
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1.3 Reactive Systems

One area of particular interest is that of reactive systems. This general classifi-

cation involves systems that run continuously, processing input and typically reacting

to their environment in a timely manner. Embedded systems are one example that

are ubiquitous in modern life and are typically reactive in nature. These range any-

where from simple thermostats to sensor nets and complex health systems. Many

reactive systems are safety-critical, where even minor errors are unacceptable. For

instance, health-related systems, cars’ anti-lock breaks, airplane flight control sys-

tems, and controls for nuclear power plants are reactive systems where failure could

be disastrous.

Reactive systems are often specified and implemented via languages specifi-

cally designed for the task, as opposed to more general computer languages. These

languages are often designed to remain simple and to enable easier verification.

The problem of system verification is a difficult and ongoing one, which we

intend to address. As it is vitally important to prove that safety-critical systems

behave properly we focus on reactive systems in particular, and attempt to prove

properties about them that fall into the category of safety properties (invariants). As

an example, consider a controller for a typical set of traffic lights. One safety property

might be that at least one colored light must be on at all times. Another might be

that a green light and a red light cannot both be on at the same time. These are gen-

erally more applicable to reactive systems than another major category of properties,

fairness properties (stating some event will eventually occur), as designers of reactive
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systems often have hard time limits associated with any properties they wish to prove

– for example, if an obstacle is detected, the brakes must engage within 0.5 seconds;

some indefinite time in the future is not sufficient. As a representative language

to describe these systems, we look at an established specification and programming

language, Lustre.

Another problem associated with verification (and many other subsets of for-

mal methods) is that of accessibility. It often requires a fair amount of experience to

use the various formal methods techniques, and possibly a large degree of user inter-

action as well. So we focus on techniques that are highly automatable, specifically an

inductive variation of a technique called model checking.

We have developed a set of techniques based on inductive reasoning that are

able to automatically prove safety properties for systems described in Lustre. This

includes (1) the translation of the system from the Lustre language into a suitable

logic IL, and then the application of k-induction with (2) path compression and (3)

abstraction / refinement to prove the invariance of a property or to provide concrete

counterexamples that can aid developers in correcting errors. While these techniques

individually have been applied to solve similar problems, we refine and combine them

to effectively deal with Lustre-based systems. We can show these are improvements,

as we have implemented these ideas in a system called Kind that outperforms other,

similar systems in these tasks. With Kind, the user needs only to provide a Lustre

program and the property to be checked; no other user interaction is required.
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1.4 About This Thesis

In the remainder of this thesis, we will be looking at the Lustre language as

a specific example of a synchronous language used to describe reactive systems, and

focusing on a particular subset of formal methods known as model checking. We have

synthesized a number of existing techniques as an overall approach that advances the

state of the art in the verification of Lustre programs.

Chapter 2 covers some background in the field, Chapter 3 describes the lan-

guage Lustre as well as a translation into the logic we shall be reasoning with, Chap-

ters 4 and 5 explain the basic algorithm we are utilizing, as well as a number of vari-

ations, and Chapter 6 describes some of the experimental results we have achieved

while exploring these issues, and Chapter 7 details some potential avenues of extend-

ing this research.
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CHAPTER 2
VERIFICATION BACKGROUND

2.1 Introduction

System verification can take many forms. One such option is to provide de-

ductive proofs that a system behaves in a certain way, possibly with the aid of an

automated theorem prover. Unfortunately, due to the undecidability of the logics

involved, such tools often require experienced human input in order to perform effec-

tively, either to encode background knowledge that the theorem prover may not have

access to or be able to deduce (such as system invariants), or else manually direct the

search of the theorem prover towards more promising areas.

Another option is that of (finite state) model checking. This highly automat-

able technique involves building a model of the system and a model of a user-supplied

specification and ensuring the system model complies to the specification. There is

still some hands-on work involved in encoding system and spec in a manner that

a model checking tool can understand, but after that the process is completely au-

tomatic. Assuming the problem will fit within memory and time constraints, the

checker will produce either confirmation that the model conforms to the specification

or else evidence of a discrepancy, possibly a counterexample that can be useful in

eliminating system errors.

A new variant of this technique is inspired by recent advances in tools with the

ability to efficiently solve propositional satisfiability problems (or SAT, the ”classic”
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NP-complete example). Bounded model checking is a method involving checking

potential executions of the model in an incremental fashion against the negation of a

specification by encoding them as propositional satisfiability formulas. If the model’s

executions conform to the specification property up to some bounded number of

steps, the resulting propositional formula will be unsatisfiable. If this is the case then

the bound can be increased and a longer run examined. If the formula proves to be

satisfiable, then a concrete counterexample can be extracted from the resulting logical

model, providing a trace of system states leading to the error.

These model checking variants can also benefit from the use of abstraction

techniques, which intelligently simplify the problem to reduce its complexity. This

can take the form of abstracting away unimportant features or replacing complex

subproblems with more manageable versions.

A fourth option is to use inductive reasoning to prove a system conforms

to a specification. This can be seen as an extension to bounded model checking,

and keeps many of its strengths while also addressing at least one of its primary

weaknesses. While bounded model checking excels at providing short examples of

system problems, it can have difficulty proving that a system really does conform

to a specification; inductive approaches, on the other hand, can often provide such

assurance.

The advances in SAT that inspired bounded model checking and have been

useful in checking systems inductively can also be lifted to a more powerful form of

solvers based on Satisfiability Modulo Theories (SMT). With these solvers it is possible
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to use more natural translations for systems, have fewer limitations on specifications,

and often still have significant performance gains over previous tools.

In the rest of this chapter we will introduce some basic concepts, and review

a number of model checking techniques. This will include a brief background on

temporal logic, several flavors of model checking, and some basic ideas on the use

of abstraction. We will finish with a brief overview of some of the advances in the

underlying SAT and SMT approaches used in some of these techniques.

2.1.1 Definitions

Formally, a base logic includes some notion of atoms, with formulas defined

in terms of Boolean connections of atoms. This base logic definition can therefore

include basic propositional logic, where atoms are simple propositions, as well as

more complex logics, such as first order logic, where the atoms include predicates

and quantified formulas. Satisfiability, entailment, and validity are defined in terms

of the structure of the base logic. A formula φ is satisfiable (SAT) if there exists

an assignment of values (interpretation) such that φ evaluates to true. Such an

assignment is called a model. A formula φ entails ψ (φ |= ψ) if for every interpretation

in which φ evaluates to true, ψ also evaluates to true. A formula φ is valid if it

evaluates to true for all possible interpretations.

A system here refers specifically to a computational artifact, either a software

program or logical hardware circuit. The particular configuration of an active system

at a given instant in time, for example the values of a program’s variables, is a state
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of the system. Depending on the cardinality of the states in a system, it may be

termed finite state (for example digital systems with bounded values) or infinite state

(such as continuous or analog systems with unbounded values).

To reason about real-world systems it is generally necessary to produce an

abstract model that distills their essences into a form that is easier to manipulate.

A real system is modeled mathmatically by a transition system defined as a relation

over states. This is formally represented as a Kripke structure, which can be seen as

a simple form of automaton. Given a set of atomic propositions P in the base logic,

a Kripke structure M = (S, I, T, L) is a structure with a set of states S, with an

initial set of states I ⊆ S, a translation relation T ⊆ S × S, and a set of state labels

L : S → 2P . To simplify reasoning about the system, it is assumed that each state in

S has at least one successor defined in T . If the original system would reach a state

with no outwards transitions, the Kripke structure instead has a transition from that

state to itself.

A path is a sequence of states in M that obey the transition relation T . If the

first state in a path is an initial state (belonging to I), that path is called initialized.

If no initialized path reaches some state s then that state is unreachable, and can be

safely discarded.

Properties indicate some constraint on the system state or execution. Proper-

ties are generally expressed as boolean combinations of predicates; a property holds

in a state if it is satisfied by that state, for some formal notion of satisfiability in a

state.
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The properties we wish to verify often fall into one of two categories: safety

properties and liveness properties. A safety property of a system is an invariant,

something that holds in every reachable state of the system. These are generally of the

notion that “nothing bad will ever happen” (e.g. a null pointer will never be accessed).

A liveness property is one that will eventually hold in any execution. These are often

of the notion that “something good will eventually happen” (e.g. the process will

terminate correctly). Both of these can be checked with model checking techniques,

though for the types of systems we will be concerned with, safety properties are

usually more significant.

A set of desired properties is often grouped as a specification for the system.

A system satisfies its specification if every possible execution of the system satisfies

the specification.

2.2 Deductive Verification

There are several methods of proving the validity of properties of systems. One

might translate the system M and property P into first- (or higher) order formulas

and use something such as a resolution-based theorem prover to interactively prove

the property holds. Assuming the system definition is translated automatically into

an appropriate formula, this allows the user to express the properties in question in a

formal yet still somewhat natural way. There is no limitation on the data types used

to describe the system, provided they can be described by the logic in question.

This technique is perfect for theorem provers, which are designed to prove
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the validity of formulas. However, if there is an execution where the property does

not hold, then the formula being checked will be invalid, and it is useful to have a

counterexample when trying to correct errors. Additionally, it may be difficult or

impossible to extract a particular incorrect execution from the invalid result. Proofs

are often in terms of rules applied, axioms, and (possibly quantified) formulas; the

theorem prover may not have an internal concept of a program execution and may

not be able to provide meaningful concrete values in the event of an invalid result.

In addition to the difficulty of extracting incorrect execution examples, deduc-

tive tools, especially ones utilizing the more powerful high-order logics, may require

extensive user interaction to deal with the infeasibility of the proof search. User

expertise may be a significant factor in the efficient use of these tools.

2.3 Model Checking

The primary alternative to the deductive approach is to attempt to disprove a

property through the technique of model checking, which is formally stated on some

kind of temporal logic.

2.3.1 Temporal Logics

Temporal logics are examples of modal logics: versions of some base logic sys-

tem such as first order logic with additional interpreted operator symbols, in this

case dealing with time. These logics are used to represent the behavior of discrete se-

quential systems in a formal and concise manner, especially to describe specifications.

Some examples of the modal operators commonly used include next (X, alternately
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π |= p iff p ∈ L(π(0))
π |= ¬f iff π 6|= f
π |= f ∧ g iff π |= f ∧ π |= g
π |= f ∨ g iff π |= f ∨ π |= g
π |= X f iff π |= f
π |= G f iff for all i ≥ 0, πi |= f
π |= F f iff for some i ≥ 0, πi |= f
π |= f U g iff for some i ≥ 0, πi |= g and for all j, 0 ≤ j ≤ i, πj |= f
π |= f R g iff πi |= g if for all j < i, πj 6|= f

Figure 2.1: LTL semantics defined over suffixes of infinite paths [11]. π is path
π = s0, s1, s2, .... πi is the suffix of π starting at si (so π0 is π itself) and L(π(0))
is the set of property labels associated with the first state in path π. Note that the
operators F and G are duals, or ¬F f ≡ G¬f , similarly with U and R.

©), which informally means a property holds in the next state; always (G or �),

meaning a property holds in the current state and all future states; eventually (F, or

⋄), meaning that a property will hold in some future state; and the binary operators

until (a U b) indicating that property a holds in all states up to one where b holds,

and release (a R b), where b holds until the first point at which a holds. Although

there are a number of temporal logics (including computation tree logic — CTL and

its more expressive extension CTL* [38]), linear temporal logic (LTL) is a particularly

popular logic for defining system properties in sequential (or interleaving sequential)

systems. This is generally built on top of propositional or first order logic, with the

addition of the modal operators mentioned above.

LTL takes the view that the execution of a system can be represented by

sequences of states, which are called execution paths, or just paths. In a path, time is

represented abstractly and discretely, with each transition between states representing
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a new unit of time. LTL formulas therefore speak of properties in sequences of states,

or an evolution of states. An LTL formula can be a formula in the base logic, or

one including Boolean connectives or modal operators. Semantically a notion of

satisfaction in LTL is given as a satisfaction relation |= between paths and LTL

formulas. The relation |= is defined inductively over the suffixes of infinite paths, as

seen in Figure 2.1 [11].

Linear temporal logic takes the view that transitions are deterministic, and is

often used to express models of systems that use an interleaving view of concurrency.

A related temporal logic, computation tree logic, takes a branching view of time — one

where there are several possible futures. This can be more appropriate for expressing

specifications dealing with nondeterminism, such as the existence of a path where a

property holds.

CTL provides a notion of satisfaction as a relation |= between systems (as

opposed to LTL paths) and CTL formulas. CTL is formed of state formulas, and

path formulas, concerning properties of each, respectively. Modal operators only

appear in path formulas, and are, in essence, explicitly quantified versions of the LTL

modal operators, meaning each modal operator either applies to all possible paths

starting from a state (AG,AF, . . .) or at least one possible path starting from a state

(EG,EF, . . .). For example, for a transition system M , M |= AGf iff f holds on all

states of all reachable paths of M , and M |= EGf iff f holds on all states of some

reachable path of M . The duals of CTL operators are as in LTL, but also incorporate

the opposite quantification, so ¬EFf ≡ AG¬f . LTL formulas can be seen to be
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implicitly universally quantified over paths.

In bounded model checking (Section 2.4) we generally we wish to check prop-

erties universally (to ensure that a safety property holds for all executions), so in CTL

we actually check if M |= EF¬f . If the Boolean translation of this is not satisfiable

then we know the property M |= AGf holds. If we can find a witness path with a

state satisfying ¬f , we have a counterexample to the property.

Both LTL and CTL are fragments of CTL*, which may have freely nested A

and E quantifiers over both paths and states. A comparison of the expressiveness of

CTL*, CTL, and LTL appears in [26]. CTL* itself is a fragment of the µ-Calculus,

a particularly expressive, but not very human-readable, logic that expresses systems

in terms of fixpoints — see [68].

2.3.2 ω-Automata

An alternative way of expressing finite-state systems and their specifications is

through the use of infinite-word automata, or ω-automata. An automaton’s language

is the set of all words it accepts. (As we are dealing with reactive systems, ω-automata

are again used to avoid the complexity of dealing with termination issues, and are

very similar to Kripke structures). In essence an accepted word for such an automaton

corresponds directly to a reachable path in LTL.

One specific class of ω-automata are Büchi automata. A Büchi automaton

B = (Σ, S, I, T, L, F ) consists of a finite alphabet Σ, a finite set of states S, a set I of

starting or initial states, a transition relation T between pairs of states, a labeling L of
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states to the alphabet, and a set F of accepting states. A path for a Büchi automaton

can be represented as a word over Σ. An infinite word is accepted, representing a legal

execution, if it encounters an accepting state infinitely many times. In other respects,

Büchi automata are similar to other automata. There is a translation algorithm from

LTL specifications to Büchi automata such that a word is in the specification — a

path is allowed — iff it is accepted by the automaton (presented on pp 156-164 of

[66]). This process is used in a number of flavors of model checking.

For example in [77], Vardi and Wolper introduce an exponential-time model-

checking algorithm that checks a system against an LTL specification by combining

automata. The idea is that both the system and the negation of the specification

are represented as Büchi automata, the first accepting infinite words that represents

the system’s possible executions, the second accepting words that describe paths that

satisfy the (negated) specification. These two automata are then intersected and the

resulting automaton is examined. If it only accepts the empty language, then the

system satisfies the specification, otherwise there is a discrepancy. This automata-

theoretic model verification is the basis for Bell Lab’s Spin system [52], one that

specializes in asynchronous programs. The automata-theoretic approach explicitly

necessitates the enumeration of all states in the system, a task that can cause a

problem’s complexity to quickly become unmanageable.
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2.3.3 Symbolic Model Checking

Most present-day model checkers do not build and check automata, but rather

they encode the transition systems symbolically through canonical representations

of Boolean formulas called binary decision diagrams (BDDs). A BDD is a directed,

acyclic graph where each non-leaf node represents a variable, with its outward edges

representing the assignment of truth values to that variable. All redundant nodes are

eliminated during construction of the graph. There are two possible leaf nodes, with

values of either true or false. BDDs can be merged or modified fairly efficiently, and

the test for satisfiability is trivial: a BDD is satisfiable iff the true node is part of the

graph. If this is the case, a linear traversal of the graph from said leaf to the root

provides a partial model of the formula encoded by the BDD. The symbolic state

encoding and use of BDDs quickly enabled model checkers to handle systems orders

of magnitude larger than they could using the basic automata- theoretic approach,

encoding 1020 states or more [15, 16].

In this sort of symbolic model checker, the states are encoded as vectors of

Boolean variables, and their transitions are encoded as a BDD. In [27] Clarke, Emer-

son, and Sistla describe a linear-time process that explicitly searches the state-space

and compares it against a CTL specification. This is expanded in symbolic model

checking to use the BDD representations of the inputs, which are then iterated over

through a series of fixpoint operations, also represented by BDDs (a version using

LTL is presented in Chapter 6 of [23]). While this method is quite useful, it does

still need to encode and manipulate the entire state space, so an exponential state
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explosion is still a potential problem. It is therefore desirable to look for techniques

that do not require the exploration of the entire system.

2.4 Bounded Model Checking

The basic idea behind bounded model checking (BMC) [11] is quite simple:

check the validity of the executions of a finite-state system incrementally by looking

at executions of increasing length. We examine a system’s executions in this manner

until either an error is detected or we reach a certain limit on the execution length.

This process is completed through unwinding the transition system, or calculating its

paths by following the system’s transition relation a certain number of steps (say, k

steps). We then check to see if an arbitrary property holds in the unwound paths; if

the property does hold, then we can increase k to k + 1 and repeat the process. If

the property does not hold, then we can extract a counterexample.

Previously we had looked at systems represented as Kripke structures where

all paths are of infinite length, but the paths we examine in BMC are a finite prefix of

these infinite paths. Symbolic model checking encodes an entire system into a BDD,

yet bounded model checking only examines finite paths in this system. How is it

possible to reconcile these two?

First note that Kripke structures utilizing a base Boolean logic all have finitely

many states, but their paths are infinitely long. Therefore all paths in a Boolean

logic Kripke structure must contain cycles; each path must revisit some state or

states infinitely many times. When defining the semantics of a bounded model, it is
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π |=i
k p iff p ∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧ g iff π |=i

k f ∧ π |=i
k g

π |=i
k f ∨ g iff π |=i

k f ∨ π |=i
k g

π |=i
k G f is false if there is no cycle within bound [i, k], otherwise iff π |=i G f

π |=i
k F f iff ∃j, i ≤ j ≤ k and π |=j

k f
π |=i

k X f iff i < k and π |=i+1

k f

π |=i
k f U g iff ∃j, i ≤ j ≤ k.π |=j

k g and ∀n, i ≤ n < j.π |=n
k f

π |=i
k f R g iff ∃j, i ≤ j ≤ k.π |=j

k f and ∀n, i ≤ n < j.π |=n
k g

Figure 2.2: Bounded path semantics [9]. All formulas are assumed to begin in negated
normal form, with negations having been pushed in to only apply to atoms. π |=i

k f
means that, for an LTL formula f and a path segment πi starting at position i and
with bound k (k ≥ 0), πi |= f . L(π(i)) indicates the labels for the ith state on path
π.

important to note if the prefix of a path π contains a cycle. If it does, then this prefix

effectively holds the same information as the (infinite) unbounded path defined by

some LTL formula. In this case then, for an LTL formula f , πi |= f iff πi |=k f (f

holds on the suffix of path π starting at i iff f holds on the segment of path π starting

at i and ending with bound k).

If it is not the case that π contains a loop within bound k, then we need to

define new bounded semantics ; see Figure 2.2 [11, 9]. In the absence of a cycle, note

that G and F are no longer duals, nor are U and R. Also note that G formulas

are conservatively considered false. However, if the bound k is sufficiently large, then

π |= f (under the unbounded semantics) iff ∃k such that π |=k f (under the bounded

semantics).

So given these semantics, it is possible to translate both a Kripke structure

M and safety property p at a given bound k from LTL into a formula Φk in the base
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logic that is satisfiable iff f holds under the k-bounded semantics of M . Φk is the

conjunction of three subformulas: one representing the unwound structure M , one

determining the presence of loops, and one representing the unwound LTL formula p.

Traditionally this is done using a Boolean base logic and the negation of the property,

allowing the question of whether the property holds in the model to be treated as a

satisfiability problem: if Φk is satisfiable, then there is a point within bound k where

p does not hold for M — a counterexample.

The Kripke structure M is unwound into the formula [M ]k from its initial

states by:

[M ]k := I(s0) ∧





k−1
∧

i=0

T (si, si+1)





with I(s0) being the representation of the initial state, and T (si, si+1) being the

transition relation from state si to si+1.

The looping condition predicate jLk is true iff there is a transition from state

sk to state sj. The loop condition Lk is true iff there exists a transition from state sk

to state sj , with j ≤ k:

Lk :=
k
∨

j=0

jLk

The property p can similarly be translated into a base-logic formula φi. To preserve

soundness of the process, properties of the form Gf are considered false if the bound

does not contain a complete loop or if the translated formula should refer to a position

i outside of bound k.
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The final formula then is:

Φk := [M ]k ∧



(¬Lk ∧ φk) ∨
k
∨

j=0

(jLk ∧ φk)





The above is generally used to check safety properties — or, more accurately, their

negations.

For liveness properties, the following translation can be used [9]:

Λk := I(s0) ∧
k−1
∧

i=0

T (si, si+1) →
k
∨

i=0

p(si)

where M |= Fp iff there exists some k such that the formula Λk is valid. So for our

purposes if we have such a k, we can verify that ¬Λk is unsatisfiable (unlike the above

we are searching for an absence of witnesses).

A similar technique can be used for equivalence checking [10], where two sys-

tems are compared. In this case we would unwind the first system and the negation of

the second, with satisfiable models representing the discrepancies. Such a technique is

used in the CBMC program to verify Verilog hardware designs against a C prototype

[25].

An alternative to the above syntactic translation harkens back to earlier model

checking approaches — the translation of the problem into a Büchi automaton. Clark,

et al. call this the semantic translation [24]. In basic model checking the system

and negation of the property are translated into Büchi automata, which are then

combined. If the resulting automaton accepts an empty language, then the property

holds. The semantic translation version of BMC does the exact same thing, but then
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it checks the resulting automaton for any accepting loops (meaning the automaton

accepts some non-empty words) by unrolling it. Therefore, it is possible to check the

automaton’s language incrementally, without necessarily encoding its entire state-

space.

In practice, it has been found that the symbolic model checking and bounded

model checking approaches to model checking can complement each other well —

for Boolean logics, each can solve problems that the other cannot. BMC can handle

larger systems and it can be guaranteed to find the shortest counterexamples, or

executions where a property does not hold, but its efficiency degrades as the bound

increases. BDD-based approaches tend to do better at finding “deep” bugs, especially,

and are complete by construction — given adequate resources they are guaranteed to

terminate, though the state space explosion limits their usefulness in large problems.

2.4.1 Completeness

It is important to stress that bounded model checking is generally used to

find bugs in a system, and it is desirable to find counterexamples with the shortest

possible run path. When looking for a witness, the basic BMC algorithm begins

with a bound of k = 0 and performs the satisfiability check. If no counterexample

is found, it then increases k and repeats until it does find a counterexample. If no

witness exists (meaning M 6|= Ep, in CTL*) then the process may not terminate. So

in general we only have a semi-decision procedure.

Therefore it is common practice to run the BMC algorithm while incrementally
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increasing the bound of k until some arbitrary maximum upper bound is reached.

While this process is indeed often good for finding errors in the system (and for

otherwise undecidable problems, being able to arbitrarily stop the process can be seen

as a plus), unless the maximum upper bound is sufficiently large, this technique is not

sufficient to verify that the system satisfies the property. For complete verification it is

necessary to establish a completeness threshold that ensures the bound k is sufficient

to include all applicable paths.

Trivially for finite Boolean systems, the completeness threshold is at most 2n,

with n being the number of state variables. This estimate is often, however, overly

large, and does not take into account any unreachable states. Therefore it is desirable

to compute tighter bounds for a problem. When checking for the existence of proper-

ties that are not nested (for example, EGp or EFp in CTL) it is necessary to visit all

reachable states, the minimum number of steps being the reachability diameter of the

model, or the longest path in the set of minimal paths to any reachable state. Essen-

tially this amounts to unwinding the model and checking to see at what point no new

states have been reached. This can be calculated via appropriate graph algorithms,

or by evaluating certain quantified Boolean formulas [56, 9]. The recurrence diameter

for reachability is a more easily computed (over) approximation of the reachability

diameter, where we instead calculate the longest loop-free path [11]. Both of these

calculations are generated via inductive calculations in [70]; we provide a simplified

approximation of this process in Section 5.2.

When checking a liveness property, one of the form Fp, there is also the pos-
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sibility of incompleteness. As above, it is possible to attempt to calculate a maximal

bound for k, but here we may be beneficial to use a different technique. In this case

we want to know if either Fp holds or if its negation holds. Because one of these must

be true, we can simply interleave the two checks, stopping when we get a favorable

result from either.1

In [2], the authors present a termination check for fairness constraints (of the

form FG¬p). In the event that the property is unsatisfiable at bound k, it is possible

to check a certain set of conditions. Once they become unsatisfiable then the property

is known to hold. First check





k+1
∧

i=0

T (si, si+1)



 ∧

(
∧

0≤i<j≤k+1

(si 6= sj)

)

∧ p(sk+1) ∧
k
∧

i=0

¬p(si)

Once this becomes unsatisfiable (at some bound m), the solver then begins to check





k+1
∧

i=0

T (si, si+1)



 ∧

(
∧

0≤i<j≤k+1

(si 6= sj)

)

∧ ¬p(sk) ∧ p(sk+1)

starting at k = m. One this also becomes unsatisfiable, it continues to increase k,

checking

I(s0) ∧





k
∧

i=0

T (si, si+1)



 ∧

(
∧

0≤i<j≤k+1

(si 6= sj)

)

∧ p(sk)

When the third has become unsatisfiable, at some n, it is possible to compute

a bound k′ ≤ m+n− 1 beyond which M |= FG¬p will never hold, thereby giving us

1It may be simpler to determine that the property never holds than that it eventually
holds, so this method may not be as beneficial for the safety case.
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a concrete stopping point.

For LTL formulas translated into empty Büchi automata the completeness

threshold is somewhat easier to compute. Let l be the longest loop-free path from

the initial state, and r1 be the reachability diameter of the automaton and r2 be

the reachability diameter of the automaton from its initial state. The completeness

threshold in this case is min(l + 1, r1 + r2). In a fully-connected automaton, for

example, the completeness threshold would be 2, no matter how many states there

were. In general, however, complete BMC from LTL is a doubly exponential algorithm

— k may be exponential in the number of state variables, and for each k there is a

SAT problem which itself may be exponential. This is the case even though there are

singly-exponential model checking algorithms for LTL [24].

2.4.2 Optimizations

One optimization in traditional model checking is the cone of influence re-

duction. In this optimization variables representing state are linked in a dependency

graph with roots being the variables representing the property to be checked. Any

variables representing states not connected to this graph are said to be outside of the

cone of influence, and as such will not be impacted by the property; they can be safely

removed. In [12] the authors define a bounded cone of influence (BCOI) reduction, a

variation of the cone of influence that is incremental with the bound depth k.

Other optimizations often involve specializations to the satisfiability solver

that is used to check the BMC formula Φ (see Section 2.7.2).
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2.4.3 Limitations

While it has desirable features, such as the ability to provide concrete coun-

terexamples and high degrees of possible automation, model checking has a number

of limitations. One of the most significant is that model checking is limited to systems

utilizing finite data types. Both bounded and unbounded model checking can only

verify systems via exploration of the entire state space, something generally not pos-

sible with infinite data types. Similarly, properties themselves must be propositional

in nature, a limitation in expressiveness. Additionally, the translation from the base

problem into a Boolean formula (for symbolic and bounded model checking) can be

rather complex, requiring some form of unique encoding of all states, with the final

formula Φ often being difficult for a human to interpret.

2.5 Abstraction

To some extent, abstraction in some form is used with all verification tech-

niques. At the very least the system will be represented as some form of mathematical

construct that models (and generally simplifies) the actual system structure and be-

havior, especially with physical systems. Certain model checking techniques, however,

rely more extensively on abstraction.

In these cases, algorithms generally follow an abstraction/refinement paradigm,

where first a conservative2 abstraction of the system is generated and used for veri-

fication, and if it fails, it is refined, or made less abstract. This process is repeated

2In the sense that the abstraction contains a superset of the executions of the original
system
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as necessary, either working from a single abstract model that is constantly being

refined, or generating new abstract models and refining them in succession.

2.5.1 Predicate Abstraction

Predicate abstraction, at its heart, is an attempt to simplify the systems that

are sent to a model checker, either to reduce the workload on the model checker or

to check more elaborate systems. Most model checkers are propositional in nature,

so it is necessary to reduce more complicated systems to that format. Aspects of the

system to be abstracted are replaced by predicates in the formula sent to the (Boolean)

model checker, while the interpretation of these predicates is typically handled by a

theorem prover. So a new problem for abstraction-based systems is that the model

checker may make assignments to the predicates that are not reachable, something

that must be caught by the theorem prover. The theorem prover is often also used for

determining new abstraction predicates that may be added in the verification process.

2.5.2 CEGAR

Counterexample-guided abstraction and refinement (CEGAR) is a general

method of refining abstractions based on analysis of inconsistencies between the ab-

stract and concrete models of the system. It follows the general abstraction/refinement

paradigm, but in this case, if the abstract model indicates the presence of a coun-

terexample that is inconsistent with the concrete model (for example, it includes

unreachable states), then it should be possible to refine the abstraction so as to elim-

inate that counterexample. Typically this is done by analyzing the conflict generated
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from the conjunction of the potential abstract counterexample and the concrete model

[28]. One could simply refine the variables mentioned, or perform some deeper analy-

sis in the hope of ruling out additional, similar false counterexamples in a single step

[51]. It is also possible that a spurious counterexample may trigger a more elaborate

process, such as re-formulating the entire abstraction [45].

An alternative form of abstraction refinement comes from using so-called Craig

interpolants [61, 62]. While the intention is similar to that of CEGAR, a different

method of analysis, based on proofs of inconsistency, is performed to determine the

refined formula, requiring a solver that supports interpolant generation.

2.6 k-Induction

In comparison with deductive approachs, model checking includes some ad-

vantages and disadvantages. Primary among its advantages are that it is a fully

automatable process, and the generation of counterexamples is usually an immediate

result of its process. Additionally it is often faster than deductive approaches, as it

tends to represent systems with more limited logics.

As an alternative to deductive verification and model checking, it is also pos-

sible to take an inductive approach. As we are dealing with formulas describing a

system M , let T (S, S ′) be a formula encoding the transition relation of M such that

T (S, S ′) holds for two states S and S ′ iff S ′ is a successor of S in the system. Let Ti

denote T (Si−1, Si). Similarly let P (Si) be a formula encoding a property such that

P (Si) is true iff the property holds for a state Si, and let Pi denote P (Si). Let I(Si)
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be a formula that is true iff state Si is initial, and I0 denote I(S0). Given this, it is

rather straightforward to perform temporal induction against the unrolling of paths

of length k. As a base case, simply first take I0 and prove the property is satisfied by

the initial states:

I0 |= P0

If this base case holds true, take the assumption that P holds for some state Sn and

prove it holds for the next state as well:

Tn+1 ∧ Pn |= Pn+1

If this inductive step case holds as well, then the property holds for all reachable

states, indicating its validity.

If the base case does not hold, then it should be possible to extract a coun-

terexample from the invalidity proof. If the step case does not hold, then we cannot

conclude anything about the property in question.

Unfortunately, this last possibility often arises when attempting to verify real

systems. It is possible to strengthen the invariant being checked, however, allowing

more definitive answers. This often requires human intervention, but in many cases

it is possible to use a fully automatable method of strengthening called k-induction

[70, 13, 34, 37, 1].

K-induction strengthens the formulas in question by looking at progressively

larger windows of the system execution paths. One begins as with standard induc-

tion above, but if an inconclusive result is obtained, the formulas are extended and

induction is attempted again, increasing an index value k.
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The base case for k-induction is

I0 ∧ T1 ∧ · · · ∧ Tk |= P0 ∧ · · · ∧ Pk

while the strengthened inductive step case is

Tn+1 ∧ · · · ∧ Tn+k+1 ∧ Pn ∧ · · · ∧ Pn+k |= Pn+k+1

where k ≥ 0. Again, an invalidity in the base case indicates a reachable counterex-

ample originating from the initial state. An entailment in both the base case and

inductive step indicates that P holds in all reachable states, a successful verification.

An invalidity in the inductive step may only indicate a need to strengthen, so k is

incremented and the base and step cases are again checked. In the case of finite

systems, this algorithm can be made complete with the addition of path compression

(see Section 5.2), as we will eventually reach a k that encompasses all reachable states

of the system.

This method does combine some of the strengths of both deductive verification

and model checking. It is fully automated and can use fast SAT-based techniques.

Also the base case checks of k-induction are essentially bounded model checking, with

the accompanying advantages. But with the induction check it is possible to actually

prove a property valid for a system before exploring its entire state space, something

not possible in standard BMC.
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2.7 Satisfiability Modulo Theories

2.7.1 Boolean Satisfiability

When the base logic is propositional, model checking, BMC, and k-induction

can all be reduced to determining the satisfiability of a single Boolean formula. A

number of highly effective techniques have been developed to solve SAT problems,

many based on improvements on a simple branching search algorithm.

The SAT problem is, given a Boolean formula f including variables V =

v1, .., vn, to find an assignment of truth values to the variables that satisfy the for-

mula, or establish that no such assignment exists. BDDs can be used to solve such

problems, as in symbolic model checking, but typically less memory-intensive tech-

niques are employed. Systems that use such techniques are called satisfiability solvers

(SAT solvers), and fall into one of two categories: incomplete or complete. Incom-

plete solvers generally use local or probabilistic search methods, and can be extremely

fast, though they cannot prove unsatisfiability. Complete solvers are therefore more

desirable for verification purposes; these systems generally involve some sort of back-

trackable search.

Almost all modern complete solvers perform this search on conjunctive normal

form formulas (CNF) using a variation of the DPLL algorithm by Davis, Putnam,

Logemann, and Loveland [32, 31]. This algorithm is based on case splitting, and

essentially traverses the semantic tree of possible variable assignments in a depth-

first fashion (with backtracking), pruning certain branches that falsify the formula.

An example of the basic algorithm can be seen in Figure 2.3. The algorithm views
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the formula as a set of disjunctions of literals (clauses), and keeps track of a pool

of unassigned literals in the formula, choosing one in each iteration of the loop, and

removing that literal and its negation (if present) from the pool. When this pool is

empty, the algorithm has made a satisfying assignment for all literals in the formula,

and terminates. Each such decision splits the search space into two regions, one

branch where the literal is asserted, and one where its negation is asserted. Once a

literal is chosen, it is asserted true and this change is propagated through the rest of

the formula. Any clauses containing the literal are marked true and discarded, and

the negation of the literal is removed from all remaining clauses. If a clause becomes

empty of all literals due to Boolean propagation, then the algorithm has detected a

conflict in the literal assignment, and must backtrack one or more steps and choose a

branching assignment opposite from the original choice. If no backtracking is possible,

then the formula is unsatisfiable. The original DPLL algorithm includes optimizations

to eliminate always-true clauses (tautology elimination) and unnecessary branches in

the search if a clause contains only one literal (Boolean constraint propagation) or if

a literal appears in the formula, but its negation does not (pure literal elimination).

Advances in SAT checkers have greatly increased their ability to solve large

problems quickly. Four major improvements include optimized Boolean constraint

propagation algorithms [86, 63], learning [60], non-chronological backtracking [60, 6],

and improved heuristics for deciding on which literals to split [63].

Boolean constraint propagation is the detection and propagation of forced vari-

able assignments. If a clause has a single literal of undetermined value, that unit
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while true do
if (out of literals) return SAT;
choose literal;
assert literal;
if (propagation = CONFLICT)

analyze conflict
if (can backtrack) backtrack decision(s)
else return UNSAT

done

Figure 2.3: Basic DPLL algorithm.

literal must be satisfied for the formula to be satisfiable — only one case needs to

be explored. The process of detecting new unit literals has been made much more

efficient through the use of watched literals, a method for detecting new unit clauses

with minimal work (originally in SATO [86] and modified in Chaff [63]). There have

also been a number of decision heuristics developed to choose what literals to assert,

always with the tradeoff of effectiveness against computation time (the “pure literal”

rule from the original DPLL can be seen as one of these); variations of one developed

for Chaff [63] have recently become popular. Some of the most recent fast systems

have also included variant decision strategies with heuristics to select between them

dynamically [36]. Learning and non-chronological backtracking (both demonstrated

in GRASP [60]) both involve conflict analysis. When the basic procedure encounters

a clause that has been made unsatisfiable, it is necessary to backtrack its last as-

signment decision and try another option. It is often possible to perform an analysis

on this conflict in order to further prune the search space by backtracking further.

Learning involves adding new clauses called lemmas that are logical consequences of
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the input formula that prevent a repetition of a bad assignment in the search.

2.7.2 BMC-specific Optimizations

There have also been a number of BMC-specific optimizations to the basic

DPLL algorithm.

In a bounded model checking encoding, there is frequently a good deal of

structural repetition in the constructed formula, especially from applying the same

transitions in different unrolling steps. This symmetry can be exploited when pruning

the search space by learning new lemmas, as presented in [74] through constraint

replication. Basically, because of the structure of formulas generated from subsequent

unwindings i and j of a system (with i < j), if a conflict is generated with respect

to a given unwinding i, then a similar conflict is likely to occur with unwinding j as

well. Whenever a lemma is generated from a conflict in step i, this near repetition in

the formula allows the solver to immediately add additional versions of the lemma,

referring to versions of the conflicting variables in step j as well. There are some

limitations to this, however, as the formula is not completely symmetric for each

step. The bounded cone of influence (Section 2.4.2) tends to break this symmetry, for

one, meaning certain variables that would have been replicated might be outside the

cone. A simple solution is to only add replicated clauses when all of their variables

are within the BCOI. Another option is to check if the proposed clause is indeed

unsatisfiable, and only add it as a lemma if so. Finally the initial and goal properties

may also break the symmetry, but these endpoints can be simply marked and their
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influence traced, stopping the replication if a marked variable is encountered [39].

Another repetition of work between steps in the BMC unwind/check/unwind/

check algorithm is that most of the formula from step i will appear again in step

i+ 1, and so much of the conflict information will remain the same. The basic BMC

algorithm does not take this into account, and treats each SAT step as independent

of all others. Instead, it is possible to forward some of the information learned in a

previous instance to the next instance in the form of lemmas, saving some repetition

of the search. In general, any lemma clauses that would be common to the current and

next instances could be immediately applied to the later instance. Detecting these

forwardable lemmas can be done by starting with a marked set of clauses (those not

based off the property holding at the bound, for example), and then marking new

lemmas whenever all of their parent clauses are marked [75]. These lemmas are then

forwarded to the next iteration, and are still considered marked.

In [55] the authors provide a more elaborate scheme for forwarding clauses, one

called distillation. In this case small lemmas that would not otherwise be forwarded

are checked against the automatically forced assertions of the new instance. If the

proposed clause is already satisfied it is redundant and so discarded, otherwise the

negation of the clause’s literals are asserted (making it unsatisfiable). Conflict analysis

will result in a new distilled lemma that is then forwarded. Distilling allows both

new clauses to be generated as well as an opportunity to refine the current decision

heuristic before the normal search is begun.

There has also been work done on modifying the splitting heuristics for SAT
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checkers when used on BMC problems. Again the structured nature of BMC formulas

can be exploited. In a BMC formula, any given clause will generally only contain lit-

erals that originated in a few adjacent steps in the unwinding process. Therefore if we

first choose literals that were all generated at unwinding step i and i+1, for example,

it is more likely that they will interact than if we chose literals from step i and, say,

step i + 12. Unfortunately, the usual SAT heuristics do not take this into account.

In [74], Strichman mentioned that the usual heuristics (specifically the GRASP [60]

default, which attempts to maximize the number of satisfied clauses) tended to choose

variables that satisfy distinct sets of clauses. Only after these sets expand do they

begin to interact with each other and result in conflicts, necessitating large amounts

of backtracking. The presented ideas were to enforce some form of localization on the

choices so that splits would tend to modify clauses that would immediately interact

and so catch conflicts earlier. Both static orderings and a dynamic window based on

such static orderings were tried, with the static ordering performing somewhat better.

2.7.3 Satisfiability Modulo Theories

One area of particular interest is in exploiting these highly efficient satisfiabil-

ity techniques to solve formulas from non-Boolean domains in the input formulas, an

effort known as Satisfiability Modulo Theories (SMT) [71, 69]. In SMT, a SAT engine

is combined with efficient decision procedures for one or more theories with domains

such as uninterpreted functions and linear arithmetic over the integers, allowing the

SMT solver to accept non-propositional (usually quantifier-free) formulas from a frag-
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ment of first-order logic. There are two basic approaches to SMT, classified as eager

or lazy. Eager approaches basically encode the non-Boolean information directly into

a Boolean formula ahead of time in a satisfiability preserving transformation (UCLID

[14] is a primary example), while lazy approaches instead try to find an abstract

propositional (partial) model and then cross-check this against the theory.

One such lazy method is using the DPLL(T ) framework [76, 43]. This al-

lows the inclusion of decision procedures for specific domains into the general DPLL

framework, and so the manipulation of richer formulas. In DPLL(T ), for example,

some theory T is incorporated into the engine in the form of a decision procedure.

When the DPLL solver encounters a theory-interpreted literal (typically non-

Boolean, possibly an abstraction for a more complicated formula), the solver queries

the theory decision procedure as to the status of the predicate. The decision procedure

generally keeps an internal set of theory-entailed literals in the form of a constraint

store, and if the literal (or its negation) is in this set, then the variable is treated as if

it had been assigned a truth value by the solver and Boolean constraint propagation

is performed. If the decision procedure cannot produce a truth value for the literal,

then it is treated as just another Boolean literal, and the solver may assign it an

arbitrary value. If the solver does assign a value to an interpreted literal then that

literal is asserted to the theory, which adds it to its internal constraint store. If the

constraint store becomes unsatisfiable, then the theory notifies the solver and the

solver must backtrack.
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2.7.4 Common Theories

There are a number of popular theories that SMT solvers support, typically

ones that can be easily combined using methods based on [64].

Of particular interest to us are theories of tuples, equality with uninterpreted

functions, and linear arithmetic over the integers and rationals. These will be of use

when proving properties for Lustre programs (see Section 3.3).

The theory of tuples includes a tuple constructor operation and projection

operation that allows extraction of a term in a given position. Equality with unin-

terpreted function symbols (EUF) is a theory concerning atoms of the form t1 = t2

where ti is a functional term of the form a or F (tj, · · · , tk). The theory includes ax-

ioms of equality and congruence between functions. It is typically implemented via

congruence closure. Rational linear arithmetic (LA(Q)) is a theory involving atoms

of the form a0 × x0 + · · · + ai × xi ⊲⊳ b, where ai, b are rational constants and ⊲⊳ can

be any of {=, <,>,=<,>=, 6=}. Decision procedures for this theory are typically

implemented as variants of well-known linear programming techniques such as the

simplex method or Fourier-Motzkin elimination. Integer linear arithmetic (LA(Z))

is of a similar form, but coefficients and variables are limited to integers.

2.8 Summary

This chapter covered a number of background areas useful in putting this

work in context. It included some general definitions and background on a number of

versions of automated system verification, including several flavors of model checking,
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such as symbolic model checking and bounded model checking. It also included a brief

overview of deductive and inductive approaches and compared general strengths and

weaknesses of these approaches. This chapter also introduced the concept of model

abstraction and refinement in the context of model checking. Finally it gave some

details of the evolution of SAT to SMT, as well as some common theories supported

in SMT that will be useful later in this dissertation.
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CHAPTER 3
CHECKING SAFETY PROPERTIES OF SYNCHRONOUS

DATAFLOW LANGUAGES

3.1 Introduction

This chapter includes an overview of reactive programming and specification

languages, used to describe systems designed to quickly and continuously react to

their environments. In particular we will focus on the Lustre language. Recall that

we are interested in verification of safety properties. We verify these properties using a

logic-based approach where we translate the system and properties into formulas and

then reason about them using automated deduction technologies. To do this we have

devised a translation that takes an idealized form of Lustre into a suitable first-order

logic IL that can model Lustre at a useful level of abstraction. A distinguishing

feature for this logic is that it lends itself to reasoning with Satisfiability Modulo

Theories techniques (see Section 2.7.3).

3.2 Reactive Languages

When specifying or implementing reactive systems, it is often convenient to

use languages specifically designed for these tasks instead of attempting to modify

traditional languages. Reactive languages are designed for situations where there is

arbitrary, constantly changing input and a desire to quickly respond to that data. As

such, they can be ideal for modeling or designing embedded systems.

Synchronous programming languages are a class of reactive languages based on
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a theory of synchronous time, where the system and its environment are considered

to both view time with respect to some (abstract) universal clock. In order to sim-

plify reasoning about such systems, outputs are usually considered to be calculated

instantly [7]. Such languages are designed to describe “real-time systems”, or ones

that must react quickly to a dynamic environment. Examples include Esterel [8], an

imperative-style synchronous language and Lustre [17, 46], a dataflow synchronous

language.

Dataflow languages are intrinsically different from traditional imperative pro-

gramming languages in that they focus on data rather than control. They have no

direct concept of stateful variables or commands as in an imperative language, and

instead represent all data as infinite sequences of values called streams (s0, s1, . . .).

Streams are related functionally, with changes in one impacting others immediately

in parallel. Analogous to a system’s state would be what we call an instantaneous

configuration of its streams, the set of stream values at a given point in time. A

simple example of a dataflow system would be a thermostat: it continuously takes in

an analog value (temperature) and returns a Boolean value (turning a heater on or

off).

3.3 Lustre

Lustre [17, 46, 48] is a simple synchronous dataflow language designed to

model reactive systems through a series of equational definitions. It was designed to

be used both as a programming language and as a specification language; as a result
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its current incarnation is used primarily as an intermediate language of the com-

mercial SCADE R© development suite created by ESTEREL Technologies, and used

extensively in development of a number of commercial products, including avionics

systems designed by the Airbus corporation and Rockwell Collins, among others. Its

rigorous design and simplicity lend themselves well to model checking and verification,

especially of safety properties.

Lustre combines each data stream with an associated clock as a means of

discretizing time. The overall system is considered to have a default clock that rep-

resents the smallest time span the system is able to distinguish, with additional,

coarser-grained, user-defined clocks. Therefore the overall system may have different

subsections that react to inputs at different frequencies. User-defined clocks are rep-

resented simply as Boolean streams. At each clock tick, the system is considered to

evaluate all streams, so all values are considered stable for any actual time spent in

the instant between ticks. A stream position can be used to indicate a specific value

of a stream in a given instant, indexed by its clock tick. A stream at position 0 is in

its initial configuration. Positions prior to this have no defined stream value.

Variables in Lustre are used to represent individual streams. Variables are

typed, with basic types including streams of real numbers, integers, and Booleans.

Additonally, basic Lustre contains a composite tuple type, allowing streams repre-

senting arbitrary groupings of other streams.

Lustre programs and subprograms are expressed in terms of nodes. Nodes

directly model subsystems in a modular fashion, with an externally visible set of
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inputs and outputs. In a functional sense, a node can be seen as a mapping of a finite

set of input streams (in the form of a tuple) to a finite set of output streams (also

expressed as a tuple). At each instant i, the node takes in the values of its input

streams and returns the values of its output streams. The top node is the main node

of the program, the one that would interface with the outside world and never be

called by another node.

Nodes have a limited form of memory that allows reference to their stream

values from a finite number of previous instants; how far back is determined statically

through use of specific clock operators in the program.

The body of each node is a set of stream definition equations of the form x = t,

where x is a local or output stream variable and t is a Lustre expression containing

variables denoting node-specific input, output, or local streams. For the most part,

the semantics of Lustre’s operators are a direct lifting of the base operators to streams.

For example, if x = (x0, x1, . . .) and y = (y0, y1, . . .) are integer streams, then x + y

is the stream consisting of the values (x0 + y0, x1 + y1, . . .). Arithmetic operators

include plus (+), minus (−), division (/), multiplication (∗), integer division (div),

and modulus (mod), and excepting the last two, are overloaded for both the integer

and real types. Boolean operators include and, or, and not. Relational operators

include =, <, >, ≥, and ≤, defined for both integer and real streams. Additionally

there is a conditional if-then-else operator. Constants are streams with a fixed value

at all instants, and can include numerals or the true or false streams.

Additionally there are four temporal operators that involve a stream’s clock:
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previous (pre), followed-by (→), when, and current. For any instant i pre(x) returns

the value of x at instant i−1, and functions as a delay, or basic memory. pres may be

nested to arbitrary depth, though the pre of a stream’s initial value is undefined. The

followed-by arrow allows the assignment of initial values to streams. At instant 0,

x→ y returns the value of x at instant 0. For any subsequent instant i > 0, it returns

the corresponding value of stream y. The when operator allows a stream to be sampled

according to a user-defined clock y. The stream x when y returns the current value of x

in an instant for which y is true. If y is false, then the stream x when y is undefined. A

node instance’s clock is dictated by the clock of its inputs, so sampling the parameter

of a node can be used to simulate subsystems operating at a slower clock1. The

current operator interpolates a value from a stream with a slower clock, allowing it to

be read by a stream with a faster clock. The when and current operators are generally

composed together. See Figure 3.1 for an example utilizing these operators. Note that

some stream expressions with unguarded temporal operators are not well defined.

A well-behaved Lustre program will only perform calculations on streams when

they are defined. This may be achieved, for example, through the use of → operators

to guard pre expressions, and current operators to guard when expressions.

An example program can be seen in Figure 3.2. In this program the node

reset timer takes a Boolean reset as input and returns a Boolean alarm. It contains

1If a node’s inputs have different clocks, the fastest is the base clock for that instance,
and any other clocks must be explicitly included as inputs. In this case the formal node
header must include this information, such as node N (a:bool; x:int when a) returns

(y:int)..., with N ’s default clock being the clock of a, while x’s clock is a. [46] Similarly,
outputs must include any clocks that may be slower than the rest of the node.
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global clock
stream 0 1 2 3 4 5 6 7 8 9 . . .
c F F T F F T F F T F . . .
x 1 2 3 4 5 6 7 8 9 0 . . .
y = pre x - 1 2 3 4 5 6 7 8 9 . . .
z = x → y 1 1 2 3 4 5 6 7 8 9 . . .
w = z when c - - 2 - - 5 - - 8 - . . .
v = current w - - 2 2 2 5 5 5 8 8 . . .

Figure 3.1: Example of temporal operators in Lustre. The stream c is a Boolean
input clock, x is an integer input stream, all others are local integer streams. A dash
(-) indicates an undefined value at that position.

a local integer variable time to keep track of the time passed.

Lustre does not support recursive node calls (actually more recent versions

do, in a very limited way, see Section 3.3.1). Additionally, stream equations must be

well-founded: a stream cannot depend on its own current value. Let R be the binary

relation between streams x, y in a single same node such that x R y iff y occurs in the

definition of x not within a pre. Given that this is a finite relation, the equations are

well founded if R does not contain any cycles. This can be expanded to multi-node

programs by first inlining any node calls (see Section 3.4).

Lustre also allows functions to be imported from a host language. These

function calls are treated as “black box” node calls within Lustre itself.

In addition to variable definitions, a Lustre program may contain assertions

that introduce additional constraints on variables. These boolean expressions are

always considered to be true, and generally used to represent known restrictions to

inputs. Operationally, assertions are transparent to the user, though they may allow
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node reset_timer (reset:bool) returns (alarm:bool);

var time: int;

let

time = 1 -> if reset then

1

else

if pre(time) = 10 then

1

else

pre(time) + 1;

alarm = (time = 10);

tel

Figure 3.2: Example Lustre program. This is a simple timer with a reset. Its return
value represents signaling an alarm; this happens every 10 clock ticks, unless a reset
is input.

certain compiler optimizations, such as skipping certain tests. As Lustre is also a

specification language, they primarily act as assumptions on the program behavior

(and so weakening any properties verified).

3.3.1 Recent Versions

The publicly available Version 4 of Lustre [49] has added several refinements

to the language to aid in use. These are generally syntactic sugar and do not add

significant power or flexibility to the core language. New operations are supported

including xor, <>, and the “onetrue” # operator. This # operator returns true if

exactly one of a tuple of Boolean streams is true. Also, Version 4 adds explicit type

conversions between values of simple data types, for example bool(0) gives the value

false. Also added are arrays and a limited form of recursion.

Arrays are implemented in terms of single-type tuples. Though they do not
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add any power to the language, they allow the user to perform identical operations

or node calls on all elements of slices of an array in a single expression, as opposed

to duplicating the operations to access all elements of a tuple. Additionally a limited

form of recursive calls is allowed, though the semantics of this is merely unrolling the

recursion into a (finite) sequence of normal node calls.

The SCADE version of Lustre [67, 79] also includes extensions such as record

data types, a case statement, and the fby and condact operators. fby initializes a vari-

able over a specified number of clock ticks. Condact combines initialization, current,

and when operators in a single command to create safely guarded expressions with

slower clocks.

3.4 Translating Lustre into IL

In this section we describe a translation of Lustre programs into first-order logic

formulas. We have developed this translation along the lines of Anders Franzén’s work

[40] on the Rantanplan system (described in Section 6.3.3) and of Michael Whalen,

et al. [84, 83]. The main differences are that [40] translates into a formulation of

Boolean and integer terms, while we translate into a logic IL, with support of reals

and other data types. And while [84, 83] also supports Lustre data types other than

Booleans and integers, it focuses on translations tailored to a two-state formulation.

Lustre is a real-world programming language, so its int and real data types

actually represent machine-bounded integer and floating point numbers. There are

currently no efficient reasoners for such data types, but there are ones for unbounded
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integers and infinite-precision rational numbers, at least under linear arithmetic. As

a result, we will actually work with an idealized version of Lustre, using these latter

data types. This version of Lustre can be modeled with a typed, first-order logic IL

containing uninterpreted function symbols, tuples, integers, and rationals. A distinct

advantage of IL is that, when used with quantifier-free formulas and linear numerical

terms, it allows the use of efficient SMT-based decision procedures. The use of these

decision procedures, however, does present some limitations on IL beyond that of

actual Lustre, in that IL is unable to model behaviors involving nonlinear numeric

calculations, as well as errors due to overflow or underflow.

In IL, we can represent a Lustre stream of type τ simply as an uninterpreted

function from N to τ , mapping a temporal position to the stream value’s type, pos-

sibly involving conditional if-then-else (ite) expressions. These functions are applied

by use of the homomorphic translation function tr, described in Figure 3.3. Note

that the numeric position n is interpreted with respect to a program’s global clock —

streams with slower clocks need to be dealt with specially. Therefore Lustre terms

utilizing arithmetic or Boolean operations can be mapped to IL terms with the

corresponding operations, and Lustre equational definitions can be represented as

universally quantified equations of stream values. For example, retaining the Lus-

tre stream names in the corresponding uninterpreted functions to more clearly show

the origins of the formulas, the Boolean stream equation a = b or c is translated

as ∀n : N.a(n) = b(n) ∨ c(n), and the integer stream equation x = y + z becomes

∀n : N.x(n) = y(n) + z(n). Most temporal operators also present straightforward
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semantics as shown in Figure 3.3. The when operator can present special problems,

however, so its translation is limited to certain cases.

Let N be any single-node Lustre program with stream variables

v = 〈x1, . . . , xl, y1, . . . , ym〉

where x1, . . . , xl are N ’s input variables and y1, . . . , ym are N ’s non-input (i.e., local

and output) variables. The semantics of N is completely captured in IL by the

universal quantification over the integer variable n of the following system of equations

∆(n) =































y1(n) = t1[v(n), v(n− 1), . . . , v(n− d)]

...
...

...

yq(n) = tq[v(n), v(n− 1), . . . , v(n− d)]

where each yi(n) = ti is the translation of the expression defining yi in N and d is

the nesting depth of pre operators in N .

Generally, multi-node programs can be modeled the same way by first recur-

sively in-lining in the main node all calls to sub-nodes as shown below and then

translating the main node as explained earlier.

Let N = A∪{y = t[f(a)]} be a Lustre node body containing a call to another

node f with arguments a. Let node f be defined by body B, with output stream o

(possibly a tuple) and formal input streams v. Let B′ be a fresh copy of B where

all streams have been renamed with new symbols, with o′ and v′ being the renamed

versions of o and v, respectively. Before translating to IL, we first inline f(a) into N

by rewriting N as follows:

A ∪ {y = t[f(a)]} −→ A ∪ {y = t[f(a)/o′]} ∪ {B′[v′/a]}
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constant streams:
tr(c, n) c

variables:
tr(x, n) x(n)

unary operators:
tr(−e, n) −tr(e, n)
tr((not e, n) ¬tr(e, n)

binary operators (⊕ = {+,−, ∗, /, div,mod}):
tr(e1 ⊕ e2, n) tr(e1, n) ⊕ tr(e2, n)
tr(e1 or e2, n) tr(e1, n) ∨ tr(e2, n)
tr(e1 and e2, n) tr(e1, n) ∧ tr(e2, n)
tr(e1 xor e2, n) tr(e1, n) xor tr(e2, n)

binary relations (⊲⊳ = {=, <,>}):
tr(e1 ⊲⊳ e2, n) tr(e1, n) ⊲⊳ tr(e2, n)
tr(e1 <> e2, n) tr(e1, n) 6= tr(e2, n)
tr(e1 <= e2, n) tr(e1, n) ≤ tr(e2, n)
tr(e1 >= e2, n) tr(e1, n) ≥ tr(e2, n)

if-then-else:
tr(if e1 then e2 else e3, n) ite(tr(e1, n), tr(e2, n), tr(e3, n)))

tuples:
tr(〈e0, . . . , ei〉, n) 〈tr(e0, n), . . . , tr(ei, n)〉

temporal operators:
tr(pre e, n) tr(e, (n− 1))
tr(e1 → e2, n) ite(n = 0, tr(e1, 0), tr(e2, n))
tr(current(e1 when e2), n) ite(tr(e2, n), tr(e1, n), tr(e1, (n− 1)))

stream definition:
tr(e1 = e2, n) tr(e1, n) = tr(e2, n)

Figure 3.3: Basic Lustre translation semantics of the translation function tr for a
program N . In all cases, Lustre streams of type τ become uninterpreted functions in
IL of type N → τ with the same symbol. Note constant streams may be represented
directly as constant values for all positions and do not need to be translated into
uninterpreted function equivalents.



51

where t[f(a)] is a term containing f(a) as a subterm, and t[f(a)/o′] is the result of

substituting an occurrence of f(a) with o′ in term t (and similarly for B′[v′/a]). We

repeat this process on the new version of N until all calls have been inlined.

Note that assert statements in Lustre are Boolean expressions interpreted as

additional constraints on the streams in the expression. When proving a property of a

node, they can be considered as assumptions for the property, and as such weaken it.

Typically these assertions are added to constrain some input values to a certain range

or behavior. asserts may be included in our translation by adding their translated

formulas to ∆. However, if they are not invariant they may introduce unsoundness

to the overall verification process.

3.4.1 Example

As an example of the translation process into IL, we will consider a simple

Lustre program that compares two implementations of a 2-bit counter: a low-level

Boolean implementation and a higher-level implementation using integers. The Lustre

code can be found in Figure 3.4.

The greycounter node internally repeats the sequence ab = {00, 01, 11, 10,

00, . . .} indefinitely, while the integercounter node repeats the sequence time =

{0, 1, 2, 3, 0, . . .}. In both cases the counter returns a boolean value that is true iff

the counter is in its third step and the input x is true. The top node test is an

example of a synchronous observer. So we wish to verify the safety property that

both implementations have the same observable behavior, i.e. that the stream OK is
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node greycounter (x:bool) returns (out:bool);

var a,b:bool;

let

a = false -> not pre(b);

b = false -> pre(a);

out = x and a and b;

tel

node integercounter (x:bool) returns (out:bool);

var time: int;

let

time = 0 -> if pre(time) = 3 then 0

else pre time + 1;

out = x and (time = 2);

tel

node test (x:bool) returns (OK:bool);

let

OK = (greycounter(x) = integercounter(x));

tel

Figure 3.4: Lustre counter example code. Each node returns a true signal if x = true

when the counter is in its third state. The node test returns the value of the safety
property to be proven.
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node test (x:bool) returns (OK:bool);

var ga,gb:bool;

itime: int;

let

ga = false -> not pre(gb);

gb = false -> pre(ga);

gout = x and ga and gb;

itime = 0 -> if pre(itime) = 3 then 0

else pre itime + 1;

iout = x and (itime = 2);

OK = (gout = iout);

tel

Figure 3.5: Lustre counter inlined code. The greycounter streams have been renamed
with a prepended g, while the integercounter streams have been renamed with a
prepended i.

always true.

First we inline the greycounter and integercounter nodes into test. For

example the greycounter node becomes a set of new stream definitions that are

renamed versions of those in greycounter, in this case all having a prepended g.

Next, any formal parameter streams are renamed to correspond to the actual node

call parameters (here the newly renamed gx is replaced by x). Finally, the node call

itself is rewritten as the (fresh instance’s) output stream, here gout. The full result

of this rewriting for both nodes can be seen in Figure 3.5.

Each stream definition equation is translated according to the basic translation
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∆(n) =































ga(n) = ite(n = 0, false,¬gb(n− 1))
gb(n) = ite(n = 0, false, ga(n− 1))
gout(n) = x(n) ∧ ga(n) ∧ gb(n)
itime(n) = ite(n = 0, 0, ite(itime(n− 1) = 3, 0, itime(n− 1) + 1))
iout(n) = x(n) ∧ (itime(n) = 2)
OK(n) = (gout(n) ⇔ iout(n))































Figure 3.6: Translated Lustre counter example.

semantics of tr from Figure 3.3:

tr(ga = false → not pre(gb); , n) =⇒

tr(ga, n) = tr(false → not pre(gb), n) =⇒

ga(n) = ite(n = 0, tr(false, n), tr(not pre(gb), n)) =⇒

ga(n) = ite(n = 0, false,¬tr(pre(gb), n)) =⇒

ga(n) = ite(n = 0, false,¬tr(gb, n− 1)) =⇒

ga(n) = ite(n = 0, false,¬gb(n− 1))

The other definition equations are translated similarly into ∆, as seen in Figure 3.6.

A second example with a greater nesting of pre, along with its translation, is

shown in Figure 3.7.

3.5 Checking Safety Properties in Lustre

Given a tuple of streams, we call any well-typed tuple of values for these

streams at a certain instant an instantaneous configuration. Note that at any partic-

ular instant the variables v in a Lustre program N denote precisely one instantaneous

configuration. Effectively, then, a Lustre program can be seen as a system of con-

straints over instantaneous configurations.
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node fib (max:int) returns (y:int);

let

y = if ((1 -> pre y) < max) then

1 -> pre(y + (0->pre y))

else

pre y;

tel
(a)

∆(n) =







y(n) =

ite(ite(n = 0, 1, y(n− 1)) > max(n),
ite(n = 0, 1, y(n− 1) + ite(n = 1, 0, y(n− 2))),

y(n− 1))







(b)

Figure 3.7: Fibonacci example. Lustre code (a) and translated equation system (b).
This node returns the Fibonacci sequence up to a user-defined maximum; after it
exceeds that maximum (max ≥ 0), it constantly returns the last sequence number
generated. Note how the doubly nested (0 → pre y) is further offset in the translation
(underlined).

Each program has a certain amount of memory associated with it, a depth

d ≥ 0 that is the maximum nesting depth of pre operators in the program, or the

maximum number of instantaneous configurations that need be considered to fully

calculate the current configuration. This notation for ∆(n) is conceptually consistent

with the fact that the value of yi(n) is a function of (some of the values in) the

configurations at instants n, n − 1, . . . , n − d. Note that it is possible to reduce any

program to an equivalent one with a depth at most 1 by fully flattening all terms

involving pre. This will be used later to simplify the explanation of our algorithms.

Also note that under this assumption, ∆(n) can be seen as a translation relation

between consecutive configurations on a legal trace.

For a program N , a trace is a tuple s = 〈s1, . . . , sl+m〉 of streams of the same
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type as N ’s variables v. A path of length q is a finite sequence of q consecutive

configurations on a trace. The possible input/output behaviors of N are exactly the

traces s that satisfy the formula ∀n : N.∆(n) when v is interpreted as s. We call such

traces legal traces. A configuration is reachable if it occurs on some legal trace. It is

initial if it is the first configuration on a legal trace, and all and only configurations

that satisfy ∆(0) are initial configurations. A path is reachable if it lays on a legal

trace. A path is initial when it is reachable and begins with an initial configuration.

As argued in [48], with Lustre programs one is primarily interested in verifying

safety properties. The sense is that, since Lustre is used to develop critical reactive

systems, we are usually not so much interested in liveness properties, but rather in

ensuring that some failure state is never attained. Even if a liveness property P is

supposedly desired, it is usually only required in a restricted sense for these systems:

knowing if the property P holds eventually is often not very useful in a real-world

setting. It is much more useful to know if the property will hold within some upper

bound. As an example, “we will eventually reach the desired cruising speed” is not

as useful as “we will reach the desired cruising speed within at most fifteen minutes.”

Or, as a more extreme example, consider “in the event of a fire, a suppressant will

eventually be deployed.” Given such hard time limits it is rather simple to re-conceive

P as a safety property.

More precisely, we verify properties that are invariant in the following sense:

a property P of paths is invariant (for N) if it holds for all reachable paths.

We will consider only quantifier-free properties, that is properties that can be
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expressed by a quantifier-free formula in IL. While this is a restriction, in common

practice safety properties can generally be expressed as quantifier-free formulas.

Further, we can reduce checking a property P of paths to the checking of in-

stantaneous configurations if P is expressible as a Lustre Boolean expression through

the use of a synchronous observer [50]. A synchronous observer is a wrapper used to

test observable properties of a node N with minimal modification to the node itself;

it returns an error signal if the property does not hold, reducing the more compli-

cated property to a single Boolean stream where we need only check if the stream is

constantly true.

Checking invariant properties of Lustre programs can be done by lifting and

adapting a number of SAT-based model checking techniques to the logic IL. The

main one used here is k-induction.

3.6 current and when

Because we are using the global clock as the basis of our concept of stream

position in our translations into IL (referenced by the variable n), the semantics of

Lustre’s current and when operator can cause difficulties, and only specific cases are

handled by tr. One example that is not supported by tr is shown in Figure 3.8. It

contains a program with a simple auxiliary node containing a counter that starts at

0 and increments every clock tick, but the second hiddencounter instance node is

running at a different clock than the main system. Because the parameter of the

h2time hiddencounter is at a slower clock, the execution of the node should be
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node hiddencounter (c:bool) returns (hc:int)

let

hc = 0 -> pre(hc) + 1;

tel

node basecounter (c:bool) returns (time,h1time,h2time:int)

let

time = hiddencounter(c);

h1time = current ((hiddencounter(c)) when c);

h2time = current (hiddencounter(c when c));

tel
(a)

global clock
stream 0 1 2 3 4 5 6 7 8 9 . . .
c F F T F F T F F T F . . .
time 0 1 2 3 4 5 6 7 8 9 . . .
h1time - - 2 2 2 5 5 5 8 8 . . .
h2time - - 0 0 0 1 1 1 2 2 . . .

(b)

Figure 3.8: Hidden counter example. Lustre code (a) and a sample timing diagram
(b). A dash (-) indicates an undefined value at that stream position. In this case the
timing diagram shows the program’s behavior when properly following the semantics
of when. Note that h1time demonstrates the effect of when on a node’s output (it
continues to operate at the global clock frequency), while h2time demonstrates the
effect of when on a node’s inputs, putting the node on the slower clock c. All nodes
must contain at least one input, precisely to establish their respective clocks.



59

∆(n) =































hc0(n) = ite(n = 0, 0, hc0(n− 1) + 1)
time(n) = hc0(n)
hc1(n) = ite(n = 0, 0, hc1(n− 1) + 1)
h1time(n) = ite(c(n), hc1(n), hc1(n− 1))
hc2(n) = ite(n = 0, 0, hc2(n− 1) + 1)
h2time(n) = hc2(n)

(a)

global clock (n)
stream 0 1 2 3 4 5 6 7 8 9 . . .
c(n) F F T F F T F F T F . . .
hc0(n) 0 1 2 3 4 5 6 7 8 9 . . .
hc1(n) 0 1 2 3 4 5 6 7 8 9 . . .
hc2(n) 0 1 2 3 4 5 6 7 8 9 . . .
time(n) 0 1 2 3 4 5 6 7 8 9 . . .
h1time(n) - - 2 2 2 5 5 5 8 8 . . .
h2time(n) 0 1 2 3 4 5 6 7 8 9 . . .

(b)

Figure 3.9: Hidden counter example, incorrect translation (a) and example timing
diagram (b). A dash (-) indicates an undefined value at that stream position. hc2(n)
is the translation of the inlined call hc2 = 0 -> pre(hc2) + (c when c).
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slowed (as opposed to the node executing at the global clock speed, but only sampled

at a slower speed).

If we simply inline the node call and apply a similar rule to tr(current(e1 when

e2), n), such as

tr(e1 when e2, n) −→ tr(e1, ite(tr(e2, n), n, n− 1))

then the parameter term c when c disappears in the normal inlining process. As shown

in the example Figure 3.9, however, the modeled behavior will be incorrect due to

the missing clock information. This problem can appear for any local variable in a

node that contains state information. One possible means to relax the constraint on

translating current and when (at least for some cases, currently not implemented) is

presented below.

The streams involving a when expression can be undefined at certain instants.

For the time being we do not choose to directly model these as potential error states,

but instead to interpolate a stream’s values when it is undefined — this may cause

some intermediate values to be defined when they technically should not be, but it

will not affect the final output of a well formed Lustre program. The problem with

“hidden” state within a node call, however, remains. If the node’s parameters are at

a slower clock, the node should only be evaluated at that slower clock. It is therefore

necessary to preserve additional clock information when inlining function calls. We

do so by assigning a label λi to each stream variable that indicates its clock.

We will accomplish this in two steps: first we infer the clocks of all streams

through a unification process, performed along with node inlining, then we will utilize
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a modified tr (tr′) to finish the translation.

3.6.1 Clock Inference

First, we rewrite the program into a functionally equivalent program N such

that any terms of the form x when y are not subterms of any expression, introducing

fresh variables as needed.

Then we assign each stream si in a program N a label λi of type Boolean

stream, containing either a variable placeholder xi or a Boolean clock stream ci. As a

global constraint, stream variables with the same name should have the same label.

We label input streams for the main node with the global, constant true clock c0.

Fresh labels are also generated when we inline node calls.

In order to model the semantics of Lustre clocks, we will need to establish an

ordering on the clocks in N . Clock streams are partially ordered by the transitive

closure of relation <f , where c1 <f c2 (c1 is faster than c2) iff the term x when c1 is

part of the (full) definition of c2. The global clock c0 is a lowest bound on clocks:

∀i ≥ 0.c0 <f ci. The base clock for a node is the fastest clock of its parameters. For

the main node the base clock is c0. For a subnode, the base clock is the least upper

bound of its input streams.

Normally we can infer the clocks of a node’s streams from the inputs — a

complication arises, however, when a node’s inputs do not appear on the right hand

side of any stream definition in the node. To deal with these orphaned inputs, we can

create a directed dependency graph G = (E, V ) of a node’s streams, with graph ver-
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tices V representing the program node’s streams and directed edges E = {(v1, v2)|v1

on LHS of definition for v2}. If subgraphs do not have an input as a source, we add

an edge eij from the subgraph’s source to the fastest input into the node.

Let N = A∪{y = t[f(a)]} be a Lustre node body containing a call to another

node f with labeled arguments (a) = 〈(a0, La0
), . . . , (aj , Laj

)〉. Let node f be defined

by body B, with labeled output stream (o, Lo) (possibly a tuple) and formal labeled

input streams v = 〈(v0, Lv0
), . . . , (vk, Lvk

)〉. Let B′ be a fresh copy of B where all

streams have been renamed with new symbols having corresponding new, renamed

labels, with (o′, Lo′) and v′ = 〈(v0, Lv′
0
), . . . , (vk, Lv′

k
)〉 being the renamed versions of

o and v, respectively. We then rewrite as in our previous translation.

Once all nodes have been inlined, we will use a set of rules to infer the

clock streams to be associated with each program subterm. These rules are from

(T, U, I) =⇒ (T, U, I), where T is the set of subterms of the program that contain

some operator (including “=” as both a relation and definition operator), U is a set

of equalities between labels, and I is a set of inequality constraints. These rules are

found in Figure 3.10, and are applied until T is empty. Lustre clock semantics specify

that (almost) all standard Lustre operations must be performed with all operands

and result being on the same clock. The two exceptions are when, which has a slower

clock for its result (specified by its second operand), and current, which has a faster

clock for its result (specifically the “next fastest” clock, which would be the clock of

the corresponding when operators). In the event of orphaned inputs, we unify the

clock of the fastest input with the root stream of appropriate isolated dependency
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Unary operators (−,¬, pre, . . ., except current):
T ∪ (op1((t1, λ1)), λ0), U, I =⇒ T, U ∪ {λ0 = λ1}, I

Binary operators (+, and,→,=, . . ., except when):
T ∪ (op2((t1, λ1), (t2, λ2)), λ0), U, I =⇒ T, U ∪ {λ0 = λ1, λ1 = λ2}, I

N-ary operators (if − then − else, . . .):
T ∪ (opn((t1, λ1), . . . , (tn, λn)), λ0), E, I =⇒ T,E ∪ {λ0 = λ1, . . . λn−1 = λn}, I

when:
T ∪ ((t1, λ1) when (t2, λ2)), λ0), U, I =⇒ T, U ∪ {λ0 = t2, λ1 = λ2}, I

current*:
T ∪ (current (t1, λ1)), λ0), U, I =⇒ T, U, I ∪ {λ0 <f λ1}

Figure 3.10: Clock inference rules. Given the set of Lustre terms T (initially all
subterms in the inlined program that contain an operand, including stream definitions
such as x = y) and a set of equalities U (initially U = {λI0 = c0, . . . , λIn

= c0}, the
labels of all input streams I0, . . . , In are equal to the global clock), and inequalities I
(initially empty), we apply the above rules until T is empty. Additionally, U should
initially contain equalities relating any orphaned input labels with their corresponding
stream labels from the dependency graph. In the case of when, we introduce a new
concrete clock. In the case of current, we introduce a constraint on the clocks in the
program. At this point, we should be able to determine a concrete clock to associate
with each stream through standard unification, and the constraints in I should be
fulfilled. If there are any clashes in the unification of E or if the constraints in I are
not fulfilled, the program is rejected.
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graphs. Any clashes in the unification of E. or inconsistencies in I indicate an error.

3.6.2 Relaxed Translation

The idea behind the relaxed translation tr′ is to eagerly interpolate all streams,

stretching streams with slower clocks so that, once initialized, all streams have a

defined value at each instant of the global clock. In the event that a stream would

normally be undefined due to sampling with the when operator, the stream instead

retains its last known value. The semantics of tr′ can be seen in Figure 3.11.

This interpolation will not affect the verification of a safety property P , ex-

pressed as a Lustre Boolean stream. If the property contains a term t that consists

of a stream operating at a slower clock, then t must be explicitly interpolated at P ’s

clock by a current operator (or else P would be inconsistent). If P operates at a

slower clock than one of its terms t (such as P = t when c), we are only interested

in P ’s value when it is sampled. If P held during its last sampled instant, it can be

considered to continue to hold while it is being interpolated at the global clock rate.

Note this assumes that clock streams will not themselves be delayed (a subject

for future work). Also note that an intermediate stream may still be translated so as

to have an undefined value at some instants; as with pre this does not prove to be a

problem as long as the undefined value is resolved for all outputs of the node.

This relaxed translation is similar to the basic translation with two notable

exceptions: the interpolation of a stream at a slower clock occurs as part of the stream

definition, and the initial instant of a slower stream is calculated as part of the →



65

constant streams:
tr′((c, cc), n) c

variables:
tr′((x, cx) n) x(n)

unary operators:
tr′((⊖ e, ce), n) ⊖tr′(e, n)

binary operators:
tr′((e1 ⊕ e2, ce), n) tr′(e1, n) ⊕ tr′(e2, n);

binary relations:
tr′((e1 ⊲⊳ e2, ce), n) tr′(e1, n) ⊲⊳ tr′(e2 n);

if-then-else:
tr′((if e1 then e2 else e3, ce), n) ite(tr′(e1, n), tr′(e2, n), tr′(e3, n)))

tuples:
tr′((〈e0, . . . , ei〉, ce), n) 〈tr′(e0, n), . . . , tr′(ei, n)〉;

temporal operators:
tr′((pre e1, ce), n) tr′(e1, (n− 1))
tr′((e1 → e2, ce), n) if ce = c0:

ite(n = 0, tr(e1, 0), tr(e2, n))
tr′((e1 → e2, ce), n) if ce 6= c0:

Create fresh variables evce
and ftce

:
let evce

(n) =
ite(n = 0, ce(n), ce(n) ∨ evce

(n− 1))
let ftce

(n) =
ite(n = 0, ce(n), evce

(n) ∧ ¬evce
(n− 1))

in:
ite(ftce

(n), tr′(e1, n), tr′(e2, n)),
tr′((current e, n), λe) tr′((e, n)
tr′((e1 when e2, λe), n) tr′(e1, n)

stream definition:
tr′((x1 = e2, ce), n) tr′((x1, ce), n) =

ite(ce, tr
′(e2, n), tr′(x1, n− 1))

Figure 3.11: Relaxed Lustre translation semantics of the translation function tr′ for
a program N . In all cases, Lustre streams of type τ (with associated label λi begin
resolved to a concrete clock stream ci in the unification step) become uninterpreted
functions in IL of type N → τ with the same symbol. In the case where the label
corresponds to the global clock c0, these translations simplify to those found in Figure
3.3. Under this translation, Boolean variables that are clocks (they occur in such a
position in a when term) are considered false when undefined. For simplicity of the
presentation, we consider definitions of streams that are not tuples (x1 above).
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term translation.

Calculating the interpolation at the stream definition level is necessary to

properly capture the interpolated behavior of a slower stream. When operating at

the global clock, this reduces to the same translation of definitions as in Figure 3.3.

The → operator takes special handling when in the context of a slower clock.

It is necessary to determine when the slower clock first is true in order to properly

initialize the stream; this initial instant is determined though the inclusion of two

additional Boolean variables: evi, which is true if e1 has ever been true, and fti,

which is true only the first time e1 is true.

Again, tr′ is not applicable in cases when clock streams are themselves delayed

— in these cases tr′ may interpolate a delayed clock with a true signal, incorrectly

interpreting this as an “active” stream when it is actually undefined. 2

These new translation semantics are used to generate a set of equations ∆, as

before. The clock labels for the hidden counter example can be seen in Figure 3.12;

a corrected translation can be seen in Figure 3.13.

The translation in Section 3.4 above can be seen as a special case of this, where

all streams have been labeled with the global (constant true) clock Cg.

2To allow for clock streams that are themselves delayed, it would be necessary to modify
tr′ in such a way that a clock stream c that is delayed is not interpolated, but instead is
interpreted as true only when c is both defined and has the value true, and false at all
other instants. This is further complicated in that c may be used in other calculations
as a normal Boolean stream, where it should be interpolated when its value is undefined.
This requires potentially including two definitions for c in our formulas, depending on if
it is being used as a clock or not. It is noteworthy that Lustre clock semantics have
proved difficult for programmers as well, eventually leading to the adoption of a restricted
current/when construct [47]: condact, where out = condact(b,N(x), i) is equivalent to out =
if b then N(x when b) else i− > pre out [79].



67

∆(n) =















































timec0 = hc0c1

hc0c1 = 0− > pre(hc0c1) + 1
h1timec0 = currentx1c2

x1c2 = hc1c0 when cc0
hc1c0 = 0− > pre(hc1c0) + 1
h2timec0 = current(hc2c4)
x2c4 = cc0 when cc0
hc2c4 = 0− > pre(hc2c4) + 1















































(a)

∆(n) =















































timec0 = hc0c0

hc0c0 = 0− > pre(hc0c0) + 1
h1timec0 = currentx1c

x1c = hc1c0 when cc0
hc1c0 = 0− > pre(hc1c0) + 1
h2timec0 = current(hc2c)
x2c = cc0 when cc0
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(b)

Figure 3.12: Hidden counter example, with clock labels on stream variables after
inlining (a), and after inferring clocks (b). Labels are subscripts.
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time(n) = hc0(n)
hc0(n) = ite(n = 0, 0, hc0(n− 1) + 1)
h1time(n) = x1(n)
x1(n) = ite(c(n), hc1(n), hc1(n− 1))
hc1(n) = ite(n = 0, 0, hc1(n− 1) + 1)
evc(n) = ite(n = 0, c(n), c(n) ∨ evc(n− 1))
ftc(n) = ite(n = 0, c(n), evc(n) ∧ ¬evc(n− 1))
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x2(n) = ite(c(n), x2(n), x2(n− 1))
h2time(n) = hc2(n)
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(a)

global clock
stream 0 1 2 3 4 5 6 7 8 9 . . .
c F F T F F T F F T F . . .
evc F F T T T T T T T T . . .
ftc F F T F F F F F F F . . .
hc0 0 1 2 3 4 5 6 7 8 9 . . .
time 0 1 2 3 4 5 6 7 8 9 . . .
hc1 0 1 2 3 4 5 6 7 8 9 . . .
x1 - - 2 2 2 5 5 5 8 8 . . .
h1time - - 2 2 2 5 5 5 8 8 . . .
hc2 - - 0 0 0 1 1 1 2 2 . . .
x2 - - T F F T F F T F . . .
h2time - - 0 0 0 1 1 1 2 2 . . .

(b)

Figure 3.13: Hidden counter example, corrected translation after simplification (a),
with sample timing diagram (b). Note x2 is technically a clock, so its translation is
guarded.
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3.7 Summary

This section introduced the language Lustre, and explained its features. It

also introduced our translation from Lustre into IL, as well as a novel extension to

this translation that handles current and when in a more general case.
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CHAPTER 4
K-INDUCTION OVER LUSTRE

4.1 Introduction

In this chapter we introduce our method for verifying safety properties in

Lustre, by first describing a basic k-induction algorithm we devised for this process.

Additionally we describe several orthogonal improvements on the basic algorithm that

we have devised or adapted from the literature.

In the next chapter we will discuss two more extensive modifications to the

algorithm: path compression and abstraction.

4.1.1 Related Work

Our work is closest to Franzén’s [41] which extends SAT-based k-induction

to produce a safety property verifier for Lustre programs with unbounded integers.

There, the extension is achieved by adding to the MiniSat SAT solver some simple

ILP procedures for handling integer constraints. The focus of [41] was building the

extended SAT solver. In contrast, we rely on much more powerful off-the-shelf em-

beddable SMT solvers that can also handle linear rational arithmetic constraints, and

work more on improving the k-induction procedure. Other work has been performed

on BMC [42].

Among the additional optimizations, ITE-elimination and inlining are similar

to the partial evaluation or inlining commonly used in compilers. Our exploration

into quantified path restrictions is based on work by de Mourna, et al. in [34]. Slicing
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and the use of the cone of influence to eliminate variables have long been used in

software and hardware analysis and model checking (e.g. [81, 57, 80, 23, 12]). These

techniques are similar, but we differentiate the two by referring to slicing as a static

pre-computation, while the cone of influence reduction is applied dynamically.

4.2 Background

Similar to the general application of k-induction based verification of transition

systems (Section 2.6), we can prove P is invariant for N if we succeed in proving the

validity of the following two formulas for some k ≥ 1. For the rest of this chapter and

the next, let N be a single-node Lustre program with variables x, and let ∆(n) be

the equational system modeling N in IL. Let P be a property of N ’s configurations

expressible by a quantifier-free formula P (n) of IL over x(n). If t is any integer term

of IL, P (t) is the formula obtained from P (n) by replacing every occurrence of n

with t. Similarly for ∆(t).

∆(0) ∧ . . . ∧ ∆(k) |=IL P (0) ∧ . . . ∧ P (k) (4.1)

∆(n) ∧ . . . ∧ ∆(n + k + 1)∧

P (n) ∧ . . . ∧ P (n + k)

|=IL P (n + k + 1) (4.2)

were |=IL denotes logical entailment in IL and n is an uninterpreted integer constant.

For the procedures in the remaining sections of this chapter and the next,

for simplicity we will assume that any program examined will have a memory depth

of at most one. This is possible by flattening the input Lustre program, a simple

rewriting of the program where we replace any non-variable expression t within a pre
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expression with a fresh variable x, and adding the definition equation x = t to the

Lustre program, to completion. Additionally, if the property is also written as part of

the program being checked as a synchronous observer, this preprocessing step allows

the program to be effectively modeled by a two-state system, a common construct in

model checking, such as in [20].

Also these procedures will often deal with counterexamples. Recall that a path

π = v0, . . . , vk+1 is initial for N if it is on a legal trace, k ≥ −1, and v0 is an initial

configuration. For the rest of this chapter, a counterexample is an initial path π where

P holds for all v0, . . . , vk, but does not hold for vk+1.

In this chapter, we will introduce a procedure based on formulas (4.1) and

(4.2) that proves invariance for properties of Lustre programs and extends it with

several enhancements. We will also provide some additional implementation details.

4.3 Basic Inductive Procedure

Both tests (4.1) and (4.2) can be decided by current SMT solvers that support

IL. To verify P we ask the solver to prove both cases for some initial k, retrying with

larger k until either the base case (4.1) is proven invalid or else the inductive step

case (4.2) is proven valid. In the event of the former, P is not invariant, and provided

the solver is able to return models, it is possible to extract a counterexample path

from a IL model of ∆(0) ∧ . . . ∧ ∆(k) ∧ ¬(P (0) ∧ . . . ∧ P (k)). In the latter case, P

will have been shown to hold for all reachable configurations, and so is invariant. We

will call the above the basic inductive procedure. Note that performing this procedure
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with just (4.1) and not (4.2) is essentially Bounded Model Checking.

The basic inductive procedure is sound, meaning it never falsely claims a

property to be invariant. It is not, however, complete for all Lustre programs, nor

can it be made so in general: for some properties and programs it is possible that the

procedure may loop indefinitely, ever increasing k.

Failure to catch a counterexample in 4.1 may result in unsoundness. Failure

to prove validity of 4.2 may result in incompleteness. For future reference, we will

call comparisons of completeness accuracy, a partial ordering over algorithms. A

verification algorithm A1 is as accurate as a verification algorithm A2 if the programs

A2 can correctly verify are a subset of the programs A1 can verify. Algorithm A1 is

more accurate as algorithm A2 if the programs A2 can correctly verify are a proper

subset of the programs A1 can verify.

Pseudocode for the basic inductive procedure is shown in Figure 4.1. It, along

with subsequent versions, uses two global sets of formulas, initially empty, which

we call contexts : Γbase and Γstep. A formula is asserted in context Γbase by adding

it to Γbase. For context Γbase and formula φ, the entailment Γbase |=IL φ holds iff

every model of IL that satisfies all formulas in Γbase also satisfies φ. The function

assertbase(φ) adds the formula φ to Γbase. entailedbase(φ) tests if Γbase |=IL φ, and

if not, then cexbase(φ) returns a counterexample formula A that satisfies Γbase but

falsifies φ. Specifically, cexbase(φ) returns A such that
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(* initialize base *)
assertbase(∆(0) ∧ ∆(1));
(* verify initial base *)
if ¬entailedbase(P (0) ∧ P (1)) then return cexbase(P (0) ∧ P (1));
(* initialize step *)
assertstep(∆(n) ∧ ∆(n+ 1) ∧ ∆(n+ 2) ∧ P (n) ∧ P (n+ 1));
k := 1;
while true do

(* INV: ∆(0) ∧ . . . ∧ ∆(k) |=IL P (0) ∧ . . . ∧ P (k) *)

(* INV:

{

∆(n) ∧ . . . ∧ ∆(n + k + 1)∧
P (n) ∧ . . . ∧ P (n+ k)

6|=IL P (n+ k + 1)

}

*)

k := k + 1;
(* Base case / BMC *)
assertbase(∆(k));
if ¬entailedbase(P (k)) then return cexbase(P (k));
(* Step case *)
assertstep(∆(n+ k + 1) ∧ P (n+ k));
if entailedstep(P (n+ k + 1)) then return Valid;

done

Figure 4.1: Base k-induction algorithm. P is the property to be checked, ∆ is the
program, both in IL. Assertions, entailment checks, and counterexample extractions
(cexx(Pi)) are with respect to a specific solver, either base case or inductive step case.
Counterexamples are with respect to the negated property Pi. Note this assumes that
the program’s memory depth is at most 1.
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where for i = 1, . . . , k + 1, vi is a well-typed tuple of values for x. Notice string

π = v0, . . . , vk+1 is a counterexample in our sense.

Similarly for the step functions, applied to context Γstep.

Note that tests (4.1) and (4.2) can be executed by a SMT solver. Also note

that (4.1) and (4.2) are independent. Similarly in the pseudocode, all calls associated

with context Γbase are independent from all calls associated with Γstep. Therefore the

algorithm actually assumes the use of two instances of the SMT solver, one for Γbase

and one for Γstep.

4.3.1 Implementation Note: SMT Solver Features

We take advantage of current technologies by implementing these algorithms

with solvers that include several features common to lazy SMT solvers (see Section

2.7.3), including being on-line, incremental, and backtrackable, being able to return

models and compute unsatisfiable cores, and being able to remember learned lemmas.

An on-line solver integrates the decision procedures into the Boolean SAT

engine in an active fashion; the status of literals is updated in the decision procedure

as literal assignment choices are made, and literals entailed by the theory are returned

to the SAT solver, a feature vital to the performance of the lazy SMT approach [43].

Because we are checking a series of formulas that differ primarily in the ad-
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dition of constraints between steps, it can be beneficial to use an incremental and

backtrackable solver. Such a solver keeps a notion of a context, as above, in which

the validity of a query formula is resolved modulo that context. Additional con-

straint formulas may be freely asserted, or added to the context, and assertions may

be retracted as well. This backtracking is necessary to undo assertions that make

the context unsatisfiable, as queries on any formula past that point will not provide

additional useful information. It can also be used to retract previous assertions that

may change or no longer be relevant to the new context. In the given pseudocode we

assume that contexts can be saved at arbitrary points and backtracked as needed in a

stack-like fashion. We also assume that backtracking will be done as necessary (such

as immediately following a non-falsified entailment check), even if it is not explicitly

mentioned in the algorithms.

The ability to preserve learned lemmas can also enhance the performance of

incremental queries, reducing the possibility of wasting work on re-doing a failed

search.

The ability to compute (possibly partial) models for an invalid formula, on

the other hand, is necessary to be able to return a useful counterexample to the user.

Computing unsatisfiable cores is generally an extension of the solver’s conflict analysis,

and necessary for our algorithms involving abstraction refinement (see Section 5.3.4).
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4.3.2 Implementation Note: Memory depth

The actual implementation does not fully flatten the program with respect to

pres. Instead it bases the starting k value on the program’s maximum memory depth

d. This more accurately preserves the structure of the program as envisioned by the

programmer and can also reduce the number of variables appearing in ∆. In this

case, the initialization step of the program includes ∆(0) through ∆(d+1), and tests

the base case for P (0) through P (d). Similarly the step case is initialized through

n+ d+ 1.

This means that we are actually checking properties over paths, not just over

configurations.

4.4 Additional Extensions

We will now examine some additional extensions to the basic procedure that

are generally orthogonal to path compression and abstraction.

4.4.1 Quantified Path Restrictions

In addition to inspiring the path compression in the next chapter, [34] (and in

a less general situation, [3]) also presents a strengthening technique that attempts to

eliminate from the search those paths that would lead to configurations that do not

preserve the property but are unreachable from an initial state. In our terms, these bad

paths are unreachable paths that invalidate test (4.2). These paths are problematic

because they force a strengthening of our hypothesis (by incrementing k) when there

is not really a counterexample. An alternative approach is to strengthen the property
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in order to proactively exclude any bad paths from the search.

When test (4.2) fails for some value n for k, we postulate that all paths that

invalidate (4.2) are, in fact, unreachable, and strengthen P accordingly. If our pos-

tulation is true and all such paths are indeed unreachable, then we have reduced

the search space. If, however, any of these paths turn out to be reachable, then the

strengthened property will fail under test (4.1) at a lower value of k then might nor-

mally be needed. Either way, then, this sort of strengthening reduces the amount of

search.

Recall under the simplifying assumption of a program N of depth ≤ 1, ∆(n)

stands for the transition relation from configuration x(n − 1) to configuration x(n).

Let T (xn−1, xn) denote such a transition. A bad path then is one that falsifies the

formula

T (xn−1, xn) ∧ . . . ∧ T (xn+k, xn+k+1) ∧ P (xn) ∧ . . . ∧ P (xn+k) → P (xn+k+1)

Since we are concerned with all paths ending in a failure of the property, this can be

simplified to

T (xn−1, xn) ∧ . . . ∧ T (xn+k, xn+k+1) → P (xn+k+1)

Therefore, a configuration that starts a bad path will satisfy the formula ψ(z):

ψ(z) ⇐⇒ ∃zn . . . zn+k+1. (T (z, zn) ∧ . . . ∧ T (zn+k, zn+k+1) ∧ ¬P (zn+k+1))

where each zi is a tuple of fresh variables representing the configuration xi and z

represents the current configuration. With ψ(x) it is possible to reach, from configu-

ration x, a configuration that falsifies P in k + 1 steps. We do not want this, so we
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strengthen P (z) to be P (z) ∧ ¬ψ(z): now every (reachable) configuration must not

only satisfy P , but also not lead to a counterexample in k + 1 steps.

Notice that this formula has universal quantification, something that is prob-

lematic for many SMT solvers. In [34] and [3] this new formula ψ(z) is rendered

tractable via quantifier elimination techniques. To give an idea, due to the equa-

tional nature of ∆ and so of T , it is possible to immediately simplify ψ, eliminating

the quantification on many of the variables using the logical equivalence:

∃x.(φ(x) ∧ x = t) ⇐⇒ φ(t)

The quantification in ψ on all local variables can be removed through such rewriting,

however notice variables corresponding to input streams will remain quantified. In

[34] and [3] the case of formulas with Boolean (or other small-domain) variables is

examined as there exist relatively simple methods of completely eliminating quan-

tification on such formulas. In IL, however, formulas may also include terms of

unbounded types such as integers and these methods are not generally applicable.

The SMT solvers we use do have some support for quantified formulas, and

we tried using them this way. Unfortunately since these solvers are incomplete with

quantified formulas, they often returned results of “don’t know” or failed to terminate.

As a result, we did not pursue this avenue further.

4.4.2 Static Analysis

There are a number of optimizations that can be performed via static analysis

of the program N and the property P to be verified.
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4.4.2.1 Slicing

Slicing is a means of eliminating variables that are not relevant to the property

at hand, slicing away unnecessary information. This is a method of simplification

long used in software analysis as a means of focusing only on relevant sections of

code [81], and can similarly be applied in hardware to focus on sub-circuits. In our

case, slicing can be done with a simple preprocessing step that traces stream variable

dependencies through the definitions of ∆ . Variables that can be traced back to a

variable mentioned in the property are kept, other variables are discarded by removing

their definitions from ∆. In general, reducing the number of variables in the problem

increases the efficiency of the SMT solvers, sometimes significantly.

We use a simplistic version of slicing where we build ∆ incrementally through

a preprocessing step that is roughly similar to our method of structural abstraction

and refinement (Section 5.3). ∆ begins empty; and we then include all definitions

of variables that occur in P . We then recursively include definitions for all variables

that occur in the right-hand side of included definitions.

Despite using this rather naive approach, even if further analysis would reveal

that some included variables are never actually used, this technique proved fast, easy,

and effective in experiments.

4.4.2.2 Cone of Influence

Differentiating this from the naive approach obtained under slicing, above, full

cone of influence reduction [23, 12] is a method often used to eliminate extraneous
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variables in symbolic model checking. The same general approach is taken (only in-

clude variables that can be traced back from the property), but the formulas involved

are determined dynamically as the program’s transformation relation is unwound.

Ideally this would only include variables that are actually relevant for proving the

property P .

The tightest possible cone of influence may require dynamic evaluation of

certain variables. As we are not interested in explicitly simulating the program in

question, we instead utilized a looser cone of influence similar to our ITE elimination,

below — depending on the value of k, we include different (increasing number of)

definitions in ∆. It is possible to determine the stream variables likely to be relevant

to the property by tracing their dependencies, similar to slicing, but also take the

depth at which a stream variable is referenced into account (with our slicing, we

merely use the presence or absence of a variable in a definition). For example, if

the property depends on x, defined as x = 1 -> pre (1 -> pre y + 1), and x was

the only stream that depended on y, y would not actually be useful in proving the

property until after x had been initialized, at k ≥ 2. Because Lustre programs are

finite, they must have a finite depth d, and so it is possible to determine the stream

variables likely to be used in the first d steps, and modify ∆(0), . . . ,∆(d) accordingly.

Trials of this optimization tended to provide a slight degradation to perfor-

mance in our experiments compared with the static slicing, possibly due to the altered

search-space or added overhead — most programs reached full definition within the

first one or two k steps.
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4.4.2.3 ITE-elimination

It is possible to prune certain portions of the search space by observing the

behavior of if-then-else (ITE) expressions in ∆. While in general it is necessary to

evaluate both possible branches of an ITE expression, in certain circumstances it is

possible to statically determine which branch will be taken. In the case of Lustre

programs expressed in IL, the formulas representing guarded pres are encoded as

ITE expressions. For the base case of the induction and most instances of the step

case it is possible to re-write the formula, eliminating some ITEs.

For example, for programs N with a pre depth of at most 1 (the general case

is similar), it is possible to simplify the translation of N into the formulas ∆(0), ∆(i),

∆(m), and ∆(m+ j), where m is a free integer constant standing for a non-negative

integer and i and j are concrete numerals (0, 1, 2, . . .), with i 6= 0. Let n be the

position meta-variable introduced in the translation. For ∆(0) we know that n = 0

and for ∆(i) and ∆(m+ j) we know that n > 0.

For example, consider a definition like

z(n) = if (n = 0) then x(0) else y(n)

If this definition appears in ∆(0), then we know that n = 0, and the expression can

be simplified to z(0) = x(0). If this definition appears in ∆(i), then we know that

it can be simplified to z(i) = y(i), and similarly for ∆(m + j). The remaining case,

∆(m), we cannot simplify.

The effect of this optimization actually turned out to be highly problem-

dependant, as changing the formulas tends to modify the search space. In some
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node test (x:bool) returns (OK:bool);

var ga,gb:bool;

itime: int;

let

ga = false -> not pre(gb);

gb = false -> pre(ga);

itime = 0 -> if pre(itime) = 3 then 0

else pre itime + 1;

OK = (x and ga and gb) = (x and (itime = 2));

tel

Figure 4.2: Lustre counter with aggressively inlined code. Compare with Figure 3.5.

cases it produced some speedup, in others some slowdown. In general, however, the

changes in overall times for our benchmark set were often not very dramatic due to

the use of this feature.

4.4.2.4 Inlining

Additionally, it is possible to easily inline certain variable definitions in the

formula as a preprocessing step, rewriting ∆ as necessary. We attempted several

degrees of inlining, from none at all, to only inlining definitions consisting of a single

variable such as x = y, to inlining most definitions that did not depend on previous

values.

In theory inlining can reduce the number of variables in the formula, hopefully

leading to faster verifications. Our experiments show that having too many variables

can degrade performance in the tested SMT solvers. On the other hand, overly

aggressive inlining can result in an exponential explosion of the size of definitions in

∆.
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An example of more aggressive inlining can be found in Figure 4.2, based off

the code from Figure 3.5.

We observed in our experiments that this technique, as expected, is not or-

thogonal with abstraction, covered in Section 5.3. While only inlining formulas of the

form x = y was beneficial even when used with abstraction, more intensive inlining

often reduced the effectiveness of abstraction. This is at least partly due to the fact

that our abstraction relies on the definitions of variables. Aggressive inlining focuses

on removing as many definitions as possible, meaning there is less to be abstracted,

and since the remaining definitions are generally more complicated, any refinements

are more coarse in nature.

4.4.3 Skipping Steps

The basic k-induction procedure allows k to be increased by arbitrary incre-

ments, essentially skipping some step tests. The step test (4.2) and its derivatives,

especially, can be computationally complex, meaning that not checking every value k

can provide significant efficiency advantages, at least in principle.

While on the surface utilizing large k increments may seem advantageous –

fewer steps means less work – there is are tradeoffs involved. In the base case, using

a k increment greater than 1 means the procedure is not guaranteed to find the

shortest possible counterexample. Additionally, the induction step is generally an

expensive test, which grows more expensive as k increases. It is possible to overshoot

the minimal k value to discover validity; in more severe cases, this attempt to solve a
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problem at a larger k may reach the resource limitations of the computer before the

problem is solved.

We experimented with be incrementing k by a fixed amount, and began ex-

perimenting with increasing k an increasing amount between steps. Either of these

can improve the algorithm’s performance, depending on the problem in question.

4.5 Summary

This chapter introduced our k-induction algorithm for verifying Lustre pro-

grams translated into IL. Additionally it discussed several modifications to this

algorithm that we adapted from the literature.
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CHAPTER 5
ALGORITHM EXTENSIONS

5.1 Introduction

In this chapter we describe two significant improvements to the algorithm

described in Section 4.3, path compression and abstraction, here implemented in

terms of our logic IL.

5.1.1 Related Work

Our path compression method of invariant strengthening can be seen as a

special case of the one described by de Moura, et al. [34]. Additionally Sheeran, et al.

describe a similar method of termination checking in [70], though applied to Boolean

systems.

A dependency-based abstraction method analogous to ours is described by

Chan, et al. [18] for the dataflow language RSML. There, however, abstractions ap-

pear to be generated statically as a preprocessing step, and not refined dynamically as

in our case. Our abstraction method is more similar to the ones developed by Clarke,

et al. [29] and Babic and Hu [4], which use a SAT solver as their reasoning engines.

Work by Vecchié and Simone[78] addresses an overall similar approach for BDD-based

systems based on Esterel, though this appears to be more of a cone of influence calcu-

lation. Work by Gupta, et al. [45, 44] has also been done with respect to abstraction,

primarily in the context of BMC. The main idea of our method however—treating lo-

cal variables as inputs and refining based on spurious counterexamples—goes back to
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Figure 5.1: Path compression. The path π2 = v(p) . . . v(i)v(j + 1) . . . v(q) is strictly
shorter than the compressible path π1 = v(p) . . . v(i)v(i + 1) . . . v(j)v(j + 1) . . . v(q).
Assume v(i) =s v(j) and π1 is reachable. Then π2 is a reachable path.

Kurshan [57] and appears in various forms in several works on hardware verification.

Our use of unsatisfiable cores in our refinement heuristic recalls a similar approach

by Chauhan, et al. [19] for SAT-based model checking.

5.2 Path Compression

One major enhancement on the basic procedure is the use of path compression

[70, 34], a means of eliminating redundant search. For Lustre programs, path com-

pression is achieved by strengthening the left-hand side of the entailments in (4.1)

and (4.2) to eliminate paths that contain repeated configurations (due to a cycle), or

more generally, configurations that are equivalent, as described below. Our approach

is based on [70], lifted to SMT. A similar approach appears to be taken in [22] (and

by extension [40]).

To simplify the description of path compression here, we first assume that

a program N has been normalized so that pre only applies to stream variables, as

mentioned in the previous chapter. Those variables that have a pre applied to them

we call state variables. The state of a configuration v is the subtuple of v consisting
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only of values of v corresponding to v’s state variables.

Recall that it is possible to look at ∆ as a transition relation between two

configurations, from configurations at instant n− 1 to configurations at instant n.

Two configurations vi and vj are equivalent, if they have the same set of

successors in ∆. This notion is interesting to us because it can be used to prune the

search space we are exploring. The intuition is that if all configurations in a reachable

path satisfy the property P to be proven, and the path contains two equivalent

configurations, it can be compressed, or represented by a strictly shorter reachable

path that also satisfies the property. An example of this can be seen in Figure 5.1.

We could strengthen the left-hand side of (4.2) so that it is satisfied only by

paths without equivalent configurations without impacting soundness and complete-

ness. Unfortunately, the full notion of equivalence is not expressible by quantifier-free

formulas, and we are limited by tools that do not handle arbitrary quantified formulas

well. As a consequence we use a more restrictive notion of equivalence, one based

on the configuration’s states: let zi be the state of configuration vi and zj be the

state of configuration vj . We write vi =s vj iff zi = zj. This equivalence relation is

expressible by a quantifier-free formula and implies equivalence in the sense above, as

expressed in the following lemma.

Lemma 1 If vi =s vj, then vi and vj are equivalent.

Proof: Assume vi =s vj. Then we will show vi and vj will have the same set of next

configurations. This can be determined by comparing the transition relations ∆(i+1)

and ∆(j + 1). Values in vi, vj fall into three classes: input values, state values, and
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other values. Input values are unconstrained in both cases, and may effectively be

discounted. The values corresponding to state variables in vi, vj are identical, by the

assumption. And all other values depend, ultimately, on either input values or state

values. Therefore ∆(i+ 1) will have the same set of next configurations as ∆(j + 1).

So we strengthen (4.2), saying that different configurations on a path from

position n to position n+ k do not have the same state, expressed by a formula Cn,k.

We can also strengthen this a little further by saying that no configurations (except

possibly the first) have the same state and an initial configuration. More formally, we

say that a path is compressed if no two configurations in it have the same state and

if no configurations (except possibly the first) are initial, otherwise it is compressible.

For i < j, let distinct(i, j) = (zi 6= zj) ∧ . . . ∧ (zj−1 6= zj), and let

Cn,k = ∆0 ∧

∧

0≤i<j≤k
(z0 6= zn+j ∧ distinct(n + i, n + j))

The formula Cn,k is satisfiable only by paths that are compressed from position n to

position n+ k.

Note that by adding Cn,k to (4.2) we compress only those paths that satisfy

the property, up to (but possibly not including) the path’s final configuration.

The new procedure with path compression performs test (4.1), followed by the

new version of (4.2), expressed as:

∆(n) ∧ . . . ∧ ∆(k + 1)∧

P (n) ∧ . . . ∧ P (n + k) ∧ Cn,k

|=IL P (n + k + 1) (5.1)
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This preserves the accuracy and soundness of the basic inductive procedure.

Accuracy preservation is trivial, as we are simply adding another constraint to the

premise of test (4.2), so if (4.2) holds, then (5.1) holds. In the following we prove that

soundness is preserved, as well. We first need to define the notion of a compression:

given an initial path π, π′ is a compression of π if π′ is compressed and the configu-

rations in π′ also occur in π, in the same order. A compression π′ of π is maximal if

it begins with an initial configuration and ends with the same last configuration of π.

Lemma 2 Every initial path has a maximal compression.

Proof: Assume π is an initial path. If π is compressed, then π is its own maximal

compression, by definition. If π is not compressed, then there are two possibilities:

Case 1. Compression within π: Assume π = v0, . . . , vi, . . . , vj , . . . , vq+1, with

0 ≤ i < j ≤ q, and vi and vj having the same state. Then vi and vj have the same set

of next configurations, by Lemma 1. Then π′ = v0, . . . , vi, vj+1, . . . , vq+1 is an initial

path strictly shorter than π, with configurations in π′ being in the same order as in

π.

Case 2. Compression with initial configuration: Let π = v0, . . . , vi, . . . , vq+1,

with 0 < i ≤ q and vi has the same state as some initial configuration. Then

π′ = vi, . . . , vq+1 is an initial path strictly shorter than π, with configurations in π′

being in the same order as in π.

In either case, π′ is a shorter path. If we apply the same argument to π′, then

it is clear that we will eventually obtain a maximal compression of π.
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Lemma 3 Let π be an initial path and π′ a maximal compression of π. Then, if π

is a counterexample for program N , so is π′.

Proof: This is a direct consequence of the definition of a maximal compression.

Theorem 1 The extension of the basic induction procedure using formula (4.1) and

formula (5.1) is sound.

Proof: By contradiction: Assume the extended procedure succeeds at step k, mean-

ing (4.1) succeeds for all reachable paths up to length k, and (5.1) succeeds for step

k, but there exists a counterexample pi (of any length) for N .

Take π and let π′ = v0, . . . , vq+1, q ≥ 0 be its maximal compression. For this

initial path, P holds for v0, . . . , vq, but does not hold for vq+1, by Lemma 3.

If q ≤ k, the entailment in (4.1) does not hold in the current step of the

procedure, a contradiction.

If q > k, consider the end segment of π′ of length k: vq+1−k, . . . , vq+1. In this

segment vq+1−k, . . . , vq satisfy P but vq+1 does not. This invalidates (5.1), again a

contradiction.

In addition to helping the solver to prove P (n + k+ 1), restricting the process

to compressed paths makes it a complete k-induction procedure when the length of

reachable compressed paths has a (finite) upper bound. Completeness in this case is

achieved by checking (4.1) and (5.1) for consecutive values of k starting at 0, with the

addition of a check to see if there are any initial (compressed) paths of length k + 1.
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This is done by checking whether the entailment of the formula

∆(0) ∧ . . . ∧ ∆(k + 1) |=IL ¬C1,k+1 (5.2)

holds, a test analogous to a loop check in bounded model checking. If this termination

check succeeds in the procedure, then we may conclude that P is invariant for N .

Theorem 2 If formula (4.1) and formula (5.2) hold for some k, then P is invariant.

Proof: We will show that if P holds for all initial paths of N up to length k and

formula (5.2) holds for N , then P will hold for all legal traces of N . This can be

proved by induction on path length.

Let π = v0, . . . , vq, vq+1, q ≥ −1 be an initial path. Assume (4.1) and (5.1)

hold for π up to the current k.

By (4.1) we know P holds for all paths of length k or less.

Inductive base: If q < k then, by the above, P holds for π.

Inductive step: Assume P holds for all reachable paths of length q, q ≥ k. We

will show it holds for π, with length q + 1.

By contradiction, instead assume that π is a counterexample where P holds

for all v0, . . . , vq, but does not hold for vq+1, again with q ≥ k. By the assumptions

there are no counterexamples shorter than π.

Because (5.2) holds, we know all paths of length greater than k are compress-

ible. Let π′ be a maximal compression of π. As shown in Lemma 2, π′ is strictly

shorter than π, and it still ends with vq+1, for which P does not hold, meaning it
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(* initialize base *)
assertbase(∆(0) ∧ ∆(1));
(* verify initial base *)
if ¬entailedbase(P (0) ∧ P (1)) then return cexbase(P (0) ∧ P (1));
(* initialize step *)
assertstep(∆(0) ∧ ∆(n) ∧ ∆(n + 1) ∧ ∆(n + 2) ∧ P (n) ∧ P (n+ 1));
k := 1;
while true do

begin
(* INV: ∆(0) ∧ . . . ∧ ∆(k) |=IL P (0) ∧ . . . ∧ P (k) *)

(* INV:

{

∆(n+ 1) ∧ . . . ∧ ∆(n+ k + 1)∧
P (n) ∧ . . . ∧ P (n+ k) ∧ Cn,k

6|=IL P (n+ k + 1)

}

*)

k := k + 1;
assertbase(∆(k));
(* Termination check *)
if entailedbase(¬(distinct(0, 2) ∧ · · · ∧ distinct(0, k)) then return Valid;
(* Base case / BMC *)
if ¬entailedbase(P (k)) then return cexbase(P (k));
(* Step case *)
assertstep(∆(n+ k + 1) ∧ P (n+ k));
(* Path compression *)
assertstep(distinct(n, n + k));
if entailedstep(P (n+ k + 1)) then return Valid;

end

Figure 5.2: Base k-induction algorithm with path compression. For i < j, the predi-
cate distinct(i.j) is true if all configurations ∆(0) and ∆(i), . . . ,∆(j−1) are pairwise
distinct (for their stateful streams) with ∆(j), and false otherwise. Other functions
are as in Figure 4.1

is a counterexample. But this is a contradiction, as there are no counterexamples of

length q or less. Therefore P must hold for vq+1, and so for all of π.

The pseudocode from Figure (4.1) is extended to include path compression

and the termination check in Figure 5.2. In this algorithm Cn,k is represented by

a combination of distinct(n, n + k) predicates, where distinct(n, n + k) is true iff
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z(0) 6= z(n+k) and z(n) 6= z(n+k)∧z(n+1) 6= z(n+k)∧. . .∧z(n+k−1) 6= z(n+k),

for i < j, and N ’s state variables z.

5.2.1 Implementation

As mentioned before, the implementation actually makes use of the program’s

memory depth d. This means that the concept of “state” can be spread out over

a number of different consecutive configurations in a trace, specifically the current

configuration and up to d prior ones (d > 0, if d = 0, the program is stateless).

distinct(i, j) in cases where d > 1 can also refer to state variables with a (negative)

offset to n. In this case it is necessary to ensure that j− i > d for N ’s memory depth

d, as prior to that streams may be assigned specific values (due to → operators) and

so not have a consistent sense of “state”1.

As concrete examples of distinct predicates, the counter comparison example

from Section 3.4.1 (Figure 3.6) has a memory depth d = 1, with (inlined) state

variables ga, gb, and itime, all with an offset of 1. In this case distinct(i, j) =

(〈ga(i), gb(i), itime(i)〉 6= 〈ga(j), gb(j), itime(j)〉). The Fibonacci example from the

same section (Figure 3.7), however has a pre nesting depth of 2; it is necessary to

include stream variable y for both of its offsets: distinct(i, j) = (〈y(i), y(i − 1)〉 6=

〈y(j), y(j − 1)〉).

1In some cases this set of state variables can be reduced. By tracing the dependencies
of variables within pre expressions it is sometimes possible to eliminate some redundancies.
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5.2.2 when and Path Compression

The above assumes that we only allow a minimal usage of when operators.

We do not perform path compression before the memory depth d, as variables

that might otherwise be considered stateful can be assigned arbitrary values through

→ operations for one or more consecutive configurations. The conservative approach

allows us a uniform means of comparing states while still guaranteeing soundness.

Normally this is trivial to do — count the nesting of pre operators in the program.

And the equivalence comparison distinct (from Figure 5.2), can be equally trivial:

s(i) 6= s(j).

Unfortunately this d is with respect to the global clock, and (stateful) terms

under a when operator do not have a well-defined depth. They might never be ex-

ecuted (and hence never have applicable state), or they might be delayed, so we

cannot know ahead of time when they will not longer be guarded by a → and should

be included in the state equivalence comparison (distinct in Figure 5.2).

5.3 Abstraction of Lustre Programs

Abstraction is often used in verification to reduce large or complex verification

problems into more manageable ones. One attempts to prove a property P for a

program N by proving it for a conservative abstraction N ′ of N . N ′ simulates N ,

and accepts at least those behaviors (legal traces) accepted by N , possibly more, and

ideally is in some sense simpler than N . For Lustre programs N ′ may, for instance,

consist of a subset of N ’s equalities. If the property holds for N ′ then it holds for N
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as well, but if the property does not hold for N ′, then it may be necessary to refine

N ′, adding equations to it and bringing it closer to N , and attempt the proof again.

We use this basic idea in our verification of Lustre programs.

Specifically, we utilize the same basic process covered in Section 4.3, but with

abstracted versions of formulas (4.1) and (4.2):

∆′(0) ∧ . . . ∧ ∆′(k) |=IL P (0) ∧ . . . ∧ P (k) (4.1’)

and

∆′(n) ∧ . . . ∧ ∆′(n + k + 1)∧

P (n) ∧ . . . ∧ P (n + k)

|=IL P (n + k + 1) (4.2’)

In these abstracted formulas, we use a simplified ∆ of N ′, or ∆′. As before, the

formula ∆′ defines a set of legal traces (of the abstract version N ′ of N), but these

are guaranteed to include all legal traces defined by the original ∆ (and allowed byN).

However, ∆′ may allow additional traces to ∆. Therefore it is possible that formula

(4.1’) may be invalid when (4.1) is valid. We call a counterexample π = v0, . . . , vk+1

for ∆′ a spurious counterexample for N if it is not also a counterexample for ∆,

similarly for (4.2’) and (4.2). In the event we discover a spurious counterexample, we

recognize that we need to bring ∆′ closer to ∆. To do so, we re-try that step of the

procedure with a newly refined ∆′.

5.3.1 Structural Abstraction

There are a number of ways to perform abstraction; we will use a form of

abstraction often used in hardware analysis, structural abstraction [57, 18, 4], as a

means of leveraging the structure of a program as a template for the abstraction.
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Figure 5.3: Structural abstraction of stream variables. This shows an initial abstrac-
tion N ′ of a program N . x = x0, . . . , xp are input variables of N . z = z0, . . . , zr

are non-input variables in the property. y = y0, . . . , yr are all remaining non-input
variables of N . Initially z are defined in the abstraction, while y are treated as inputs.

In structural abstraction, certain non-input streams are left undefined and treated

as inputs. The abstraction is refined by adding back definitions for some of these

streams. Because a single node Lustre program can be expressed as a set of stream

variable definitions, and we inline all node calls in our translation, this provides a

ready means of abstracting and refining a program.

The basic idea is that stream variables in ∆′ are classified as refined, un-

defined, or true inputs. Refined and undefined variables correspond to non-input

streams in the original program while true inputs are inputs in the original. Re-

fined variables are constrained by their equational definition from N , while undefined

variables are not. True inputs have no such definition to begin with, and so remain

unconstrained. Initially only the variables occurring in the property are provided

definitions and so considered refined, and all others remain undefined. An exam-
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ple of this can be seen in Figure 5.3. Here the concrete system consists of stream

variables 〈x0 . . . , xp, y0, . . . , yq, z0, . . . , zr〉, with x = x0 . . . , xp being input variables,

z = z0, . . . , zr being non-input (local and output) variables occurring in the property,

and y = y0, . . . , yq being all remaining local and output variables. The abstraction

initially considers only z to be non-input variables while all others are treated as

(abstracted) inputs, greatly simplifying the definition of ∆′ in (4.1’) and (4.2’), when

compared with the original ∆. As we attempt to prove a property invariant, it may

be necessary to refine ∆′; we do this by choosing one or more variables in y and refin-

ing them, adding their definitions and effectively transforming them from undefined

(abstracted inputs) to being refined (non-input) variables.

This strategy follows the general counterexample-guided refinement paradigm

(CEGAR) [28], where refinement is based on analysis of spurious counterexamples. In

the simplest version of CEGAR, the specific spurious counterexample π = v′0, . . . , v
′
k+1

of N ’ is eliminated through the use of a focused constraint that just negates the for-

mula representing that counterexample. Such a constraint can actually guarantee

progress in finite transition systems, reducing the total search space; however, in

infinite state systems, eliminating one of a possibly infinite set of spurious coun-

terexamples is not sufficient. Instead of adding constraints to eliminate a specific

counterexample, is possible to refine all variables that occur in the counterexample

and so (possibly) constrain all these variables by their relation in ∆, effectively elim-

inating a (possibly infinite) set of spurious counterexamples that include this specific

one.
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It is possible, however, to do too much refinement and so get an abstraction

that contains more detail than is necessary to prove the property, losing some of

the simplification that is the benefit of abstraction. So instead we refine only a few

variables derived from analysis of the counterexample as opposed to all that appear

in it.

5.3.2 Basic Procedure with Abstraction/Refinement

Variables in z (see Figure 5.3) begin as defined, those in y are initially unde-

fined. We then test (4.1’) and (4.2’) for a given k, similar to the basic procedure.

If we find a counterexample for N in (4.1’) or (4.2’) holds, we may stop, as before.

If (4.1’) holds and there is a counterexample to N in (4.2’), we increase k and try

again. As the procedure progresses, though, it is possible that we may discover a

spurious counterexample in (4.1’) or (4.2’) by receiving an unsatisfiable result from

a satchecker() query. This is an indication that our abstraction ∆′ is too coarse, and

needs to be refined. To do this we choose one or more undefined variables from y (the

precise variables are determined by a refinement heuristic, see Section 5.3.4) and add

their definitions to ∆′. This process continues until we prove the property invariant

for the abstracted system or find a counterexample that is also a counterexample for

N .

The pseudocode for this procedure with abstraction/refinement is shown in

Figure 5.4. It differs from the basic procedure in Section 4.3 in three primary respects.

First, it utilizes the current version of ∆′ in both of the base and step instances of
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(* initialize base *)
assertbase(∆

′(0) ∧ ∆′(1));
assertchecker(∆(0) ∧ ∆(1));
(* verify initial base *)
while ¬entailedbase(P (0) ∧ P (1)) do

if satchecker(cexbase(P (0) ∧ P (1))) then return cexbase(P (0) ∧ P (1))
else ∆′ := refine(∆′, core(cexbase(P (0) ∧ P (1))));

done
(* initialize step *)
assertstep(∆

′(n) ∧ ∆′(n+ 1) ∧ ∆′(n+ 2) ∧ P (n) ∧ P (n+ 1));
assertchecker(∆(n) ∧ ∆(n + 1) ∧ ∆(n + 2) ∧ P (n) ∧ P (n+ 1));
k := 1;
while true do

(* INV: ∆′(0) ∧ . . . ∧ ∆′(k) |=IL P (0) ∧ . . . ∧ P (k) *)

(* INV:

{

∆′(n) ∧ . . . ∧ ∆′(n+ k + 1)∧
P (n) ∧ . . . ∧ P (n+ k)

6|=IL P (n+ k + 1)

}

*)

k := k + 1;
(* Base case / BMC *)
assertbase(∆

′(k));
assertchecker(∆(k));
while ¬entailedbase(P (k)) do

if satchecker(cexbase(P (k))) then return cexbase(P (k))
else ∆′ := refine(∆′, core(cexbase(P (k))));

done
(* Step case *)
assertstep(∆

′(n + k + 1) ∧ P (n+ k));
assertchecker(∆(n+ k + 1) ∧ P (n+ k));
while true do

if entailedstep(P (n+ k + 1)) then return Valid
else if satchecker(cexstep(P (n+ k + 1))) then break;
else ∆′ := refine(∆′, core(cexstep(P (n+ k + 1))));

done
done

Figure 5.4: Base k-induction algorithm with abstraction. Here ∆′ indicates the
current abstraction of the fully defined ∆. When an entailed(P (k)) query fails,
cexbase(P (k)) is the assignment returned by solver base modeling the invalidity (simi-
larly for checker and step). If satchecker(cexbase(P (k))) fails, then core(cexbase(P (k)))
is a (smallish) subset of cexbase(P (k)) such that entailedchecker(core(cexbase(P (k))) →
¬P (k)) holds. refine(∆′, core) is the abstraction refinement strategy, possibly based
on the core, that returns ∆′ with additional definitions. refine(∆, core) always re-
turns ∆. The specific strategies are detailed in the text.
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the solver. Second, it assumes the use of a third instance of the SMT solver, checker,

that uses un-abstracted ∆ equations. This checker solver instance is what we use to

determine if a counterexample π is spurious or not – Γchecker contains the concrete

(un-abstracted) ∆(0) ∧ . . .∧∆(k) and ∆(n) ∧ . . .∧∆(n+ k + 1), defined through k.

If π is satisfiable in the context of Γchecker then π is an actual counterexample for N ,

as opposed to a counterexample only for the abstraction ∆′. For each test (4.1’) and

(4.2’), the algorithm performs a refinement loop that lasts until the checker agrees

with a proposed counterexample assignment.

In the pseudocode, assertbase(φ) and entailedbase(φ) are as in the basic algo-

rithm (Section 4.3), similarly for step, though these as well as cexbase() and cexstep()

are with respect to ∆′. assertchecker(φ) and the satisfiability test satchecker(cexbase())

are with respect to the un-abstracted ∆. If satchecker(cexbase()) holds, then the base

(or step) counterexample for N ′ is also a counterexample for N . Otherwise the coun-

terexample is spurious. In the latter case, we can retrieve a subset of the values of

cexbase|step from the checker, called corechecker(). refine(∆
′, core()) then refines the

abstraction based on core() and some strategy, and returns the updated ∆′. The

refinement stops when ∆′ = ∆, at which point the algorithm reduces to the basic

k-induction procedure.

Progress in this algorithm is measured by a strengthening of the constraints,

either through refinement of ∆′ or an increase in k. It is generally necessary to do

both. Increasing k with a too-abstract ∆′ will often make the procedure diverge: ∆′

often remains too weak for the property to ever be proven invariant, and can produce



102

an infinite sequence of spurious counterexamples. On the other hand, refining ∆′ too

soon can eliminate the benefits of abstraction. The algorithm therefore only performs

refinements as necessary to ensure no counterexamples are spurious, here determined

by the relatively fast entailment check of counterexamples against ∆.

5.3.3 Combining Abstractions and Path Compression

If is also possible to combine path compression and abstraction, however, these

two enhancements are not completely orthogonal. If we simply utilize abstracted

forms of equations (5.1) and (5.2) based on the current ∆′: (5.1’) and (5.2’), with

Cn,k containing only those state variables that are defined in N ′, it is possible to

produce unsound results.

A simple example presents itself in a problem with just two state variables: x

and y. Suppose N has a counterexample where

π =































x = 1, 2, 3, . . .

y = 1, 1, 2, . . .

...
...

...
...































with the property holding for the first two tuples, but not the third. If we had a N ′

that had the state variable y defined, but not x, then the check (5.2’) would hold at

k = 2, causing the algorithm to halt prematurely with a “invariant” result, in this

case unsound.

One solution to this problem (utilized in the experimental results in Section

6.3) is to initially utilize only the abstracted state variables in Cn,k, but to re-check

any valid result by adding definitions for all state variables still abstracted (thereby
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expanding Cn,k), and re-perform the appropriate test. The problem arises because

Cn,k may be too weak, so we strengthen it by including the additional terms. If the

(induction step) test no longer holds, it will lead to a spurious counterexample, which

can be resolved normally.

Another method is to simply utilize the fully-defined Cn,k, based on ∆, from

the beginning.

5.3.4 Implementation: Refinement Strategies

As mentioned above, we base our refinements on an unsatisfiable core gen-

erated by the failed counterexample check. When we have a formula A denot-

ing a spurious counterexample π, it is a counterexample for ∆′ but not ∆. If

∆(0)∧ . . .∧∆(k)∧A is unsatisfiable, then the unsatisfiable core u is an unsatisfiable

subset of ∆(0) ∧ . . . ∧ ∆(k) ∧ A, ideally a minimal subset. Similarly an unsatisfiable

core can be derived from an unsatisfiable ∆(n)∧. . .∧∆(n+k+1)∧A. Unless otherwise

noted, we pick stream variables from those that appear in u on which to base our re-

finement. We do not wish to refine the entire unsatisfiable set of ∆(0)∧ . . .∧∆(k)∧A,

as this is too undirected; instead we utilize the (smaller) unsatisfiable core. Modern

SMT engines can return such a set.

Also, unless otherwise noted, we look at a whole stream such as z as a candidate

for refinement, rather than a particular point on the stream, such as z(5).

While performing experiments with this abstraction paradigm, we tried a num-

ber of different methods of refinement. Some strategies only refine a single variable
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at a time, while others refine multiple variables in a single refinement step.

The refinement methods can all be seen as search strategies. The graph we

are searching is a dependency graph of program variable definitions, with nodes being

labeled by the variables in the program, and edges indicating a direct dependency

between two variables. A node nc is the child of a parent np if nc’s variable occurs in

the right hand side of the definition of np’s variable. Each node is further marked as

being refined, undefined, or fully refined. Refined and undefined correspond directly

to the status of the node’s variable. Fully refined indicates that either this node

represents an input variable (and so cannot be refined) or it is refined and all of its

descendents are fully refined.

While ∆′ 6= ∆, each refinement step consists of one or more refinement in-

stances. Each instance adds the definition of exactly one variable to ∆′. In general

we maintain a set of nodes that are candidates for refinement in a priority queue,

reinitialized for each refinement step. This queue is initialized with the nodes corre-

sponding to variables found in the unsatisfiable core2. In each refinement instance, we

remove the first (highest priority) node nh in the queue. If nh is undefined, we refine

nh’s variable, adding its definition to ∆′, mark nh as refined, and stop this instance.

If nh is an input or nh is refined and its children are fully refined, we mark nh as fully

refined and choose the next node. Otherwise we add its children to the queue and

choose the next node. The overall refinement process stops once all nodes are fully

2In order to ensure each refinement instance adds one definition, we also include the
graph source nodes (the property variables) with the lowest possible priority in the frontier
initialization.
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refined, as then ∆′ = ∆.

The specific strategies can be differentiated by how they assign node priorities

and the number of instances in each step.

5.3.4.1 Basic Refinement

This refinement is probably the most basic investigated, a simple depth-first

search. Priority in the queue is the depth of a node (number of edges taken from the

root), and each refinement step consists of a single instance.

Ideally this would result in a model that retained a large amount of abstraction,

and so smaller state spaces. This strategy proved to not scale well with the number of

variables in the problem, however, as these problems often require many refinement

steps, and so expensive re-evaluations of (5.1’) and (5.2’).

5.3.4.2 Breadth-First

Basic refinement uses depth-first search. To use breadth-first search, we in-

stead give the highest priority to the lowest depth nodes. This suffers the same basic

problem of basic refinement in that not enough variables are refined in each step.

5.3.4.3 Core Number Refinement

Since basic refinement does not refine enough variables in each refinement

step, we tried a number of variations. Core number refinement essentially calls basic

refinement multiple times. Priority is still based on node depth, but we use the same

number of instances in each step as there are variables in the unsatisfiable core. This
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(a) (b)

Figure 5.5: Path refinement example. For abstracted non-input variables yi, input
variables xi, and (refined) property variable P , we choose some unrefined variable
y2 in (a). Path refinement adds definitions for abstracted variables in a depth-first
traversal from y2 through y3 and y4, until it reaches input variable x1 in (b).

offers an improvement over basic refinement, especially in large problems.

5.3.4.4 Core Refinement

This version attempted to more closely tie the refinements to the core itself,

refining the variables in the core or their closest undefined descendants. The number

of instances equals the size of the core, but this time the core variables are re-assigned

highest priorities after each instance. Again, this offers an improvement over basic

refinement, although in the case of larger problems, it may still not refine a sufficient

number of variables in each refinement step.

5.3.4.5 Path Refinment

One observation with the basic refinement strategy is that when a variable x in

a spurious counterexample is refined, often the next iteration also results in a spurious
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counterexample, but with a variable y in the unsatisfiable core that is a descendent

of x in the dependency graph. This behavior is often repeated until the refinement

reaches an input variable, meaning that the elimination of spurious counterexamples

results in a path of refinements through the dependency tree from x to the input

variable. See Figure 5.5.

Path refinement attempts to shortcut this process by taking an unsatisfiable

core variable and defining it and its undefined children recursively in a depth-first

fashion, until an output variable is reached. This proved to be one of the best overall

refinement strategies explored. Path refinement prioritizes based on node depth, but

includes as many instances as necessary to reach a node labeled by an input variable.

This strategy does prove to be inferior to some others in cases where there

are large numbers of variables with large numbers of subterms (higher branching

factor in the dependency graph), as it can still require a large number of iterations

to completely eliminate spurious counterexamples.

5.3.4.6 Subtree Refinement

Since path refinement seems to work well, it seemed reasonable to try expand-

ing all sub-terms of a chosen variable instead of just one. Priority is again based on

node depth, but iterations continue until the we reach a sibling of the first node to

be refined in this step.

While this helped in cases where there were a large number of variables and

(nearly) all needed to be quickly refined, it tended to refine too quickly in other
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problems, fully refining the abstraction in short order.

5.3.4.7 Heuristic Path Refinement

Initial attempts at a heuristic path refinement took a cue from SAT solver

methods, specifically chaff’s VSIDS[63] predicate ordering method, and attempted to

prioritize nodes based on their presence in unsatisfiable cores earlier in the search,

so instead of a simple depth-first search, a greedy search was performed. Variations

giving priority scores based on the number of times a variable occurred in unsatis-

fiable cores (both high and low priority) were attempted, but initial tests did not

provide significant overall improvement to the basic path refinement, and the added

algorithmic complexity did not seem warranted.

5.3.4.8 Fine-grained Temporal Refinement

The above refinement strategies do not take the temporal situation into con-

sideration. When a variable is defined, it is considered defined for all future k instants,

as well as retroactively to previous k instants. Fine-grained refinement breaks with

this approach and instead only defined variables for those specific time instances men-

tioned in the unsatisfiable core. It does not perform any particular search and does

not retain a priority queue. The intent of this would be to retain maximal abstrac-

tion in ∆′. Unfortunately the overhead of this minimal refinement made this even

less useful than basic refinement.
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5.3.4.9 Hybrid Temporal Refinement

This combines basic and fine-grained strategies. In hybrid temporal refine-

ment, once a variable is refined, it is refined from that point forward, but not retroac-

tively. The reasoning is that if a conflict depends on vi then it is likely in the next

step a conflict will also depend on vi+1, but since we did not have a conflict in the

previous step, it may not be necessary to define vi−1.

So once a variable is marked to be defined (as per fine-grained temporal re-

finement), all versions of later instants are defined as well. Previous instant versions

are only refined as the unsatisfiable core demands. The additional bookkeeping for

this added to the complexity, while performance did not significantly improve over

the simpler basic strategy.

5.4 Summary

This chapter discussed two significant modifications to our basic k-induction

algorithm, path compression and structural abstraction. These can offer significant

improvements over the basic algorithm: we have shown abstraction to be effective in

the case of invalid problems, and path compression reduces incompleteness for valid

problems. In addition we have proved several properties of these algorithms.
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CHAPTER 6
IMPLEMENTATION AND EXPERIMENTS

6.1 Introduction

In this chapter, we discuss the Lustre verifier we developed and compare it

with several other state of the art systems.

6.2 The Kind System

We implemented and evaluated the ideas presented in the previous two chap-

ters in a system called Kind, written in Objective Caml[53]. Kind parses Lustre

programs and translates them into formulas, as described in Section 3.4, then sends

these formulas to several instances of an SMT solver. It then performs a series of

assertions and queries as described in Chapter 4.

Kind currently supports the Yices[35] and CVC3[5] SMT solvers. These both

natively support the majority of functionalities that our algorithms assume, including

being on-line, incremental, and backtrackable, and being able to return models. Yices

is also able to natively compute unsatisfiable cores, while this must currently be

approximated in CVC3.

The implementation does contain a few differences with the presented algo-

rithms. The most notable difference is that Kind utilizes translations that are not

reduced to a memory depth of at most one. Instead it allows for arbitrary memory

depths in a node. The primary impact of this is that we generate a slightly more

compact translation (with fewer variables) and the initialization process of the algo-
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rithm may start with a k value greater than 1. This does mean Kind will have a

minimum depth (possibly greater than 1) at which it can find a counterexample or

prove a property invariant.

Another difference is that Kind internally utilizes indices with non-positive

values, meaning the initial state will always have a −k index and the last unrolled

state in the base case will have index 0. Negative indices were implemented to test

more efficiently the cone of influence variations mentioned in Section 4.4.2.2. This

does not significantly alter the workings of the algorithms used.

As mentioned in Section 3.4, Kind tests an idealized version of Lustre; several

standard features are not supported. Among these features not supported are forward

references in node calls (calling a node before its block definition appears), user-

defined types, the at-most-one operator (#), and arrays. Many programs containing

these unsupported features can be rewritten into functionally equivalent programs

that Kind does support. Support for records is currently minimal. Also, full support

for when has not yet been implemented.

Kind can be divided into three main subsystems: the parser, the formula

generator, and the induction loop control.

The parser translates an input program from Lustre into an intermediate for-

mat and stores it in an abstract syntax tree (AST). The abstract syntax tree is then

sent to the formula generator, which translates the AST into a set of variable defi-

nition macros that will be used to define ∆. Dependencies among variables are then

calculated, and these are used to perform the static slicing analysis (Section 4.4.2.1)
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and inlining. Definitions that are sliced away are ignored, the rest are passed on to the

induction loop control. Most formulas are computed statically and stored as macros,

the main exception being the path compression constraint in the case of abstraction.

Kind then follows the algorithms in Figures 4.1, 5.2, and 5.4 quite closely,

including a combination utilizing both path compression and abstraction. Definitions

are instantiated from the macros as they are asserted.

Combinations of path compression and abstraction may be done soundly in

two ways in Kind: by computing a path compression constraint C(n, k) statically, in-

cluding any currently-undefined state variables, or by computing C(n, k) dynamically,

using only the currently defined state variables. In the latter case, if the algorithm

returns a Valid result while some state variables remain undefined, it is necessary to

include an additional check to avoid unsoundness: if either the termination test (5.2)

or the augmented step test (5.1) result in a positive result, we immediately refine all

stream variables with memory (those that would appear in the unabstracted version

of Cn,k) and repeat that test.

It is important to note that the algorithms presented in Figures 4.1, 5.2, and

5.4 (and implemented in Kind) are incremental. If k is incremented by larger values

than 1, we may break the assumptions inherent in those algorithms, and so it is

necessary to include in the process any definition assertions and account for any tests

that might have been skipped as a result of a larger k increase. Failure to do so can

result in unsoundness.
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6.3 Experimental Results

To evaluate Kind against the state of the art in the automated verification of

Lustre programs, we compared it with all the publicly-available Lustre verifiers we

were aware of. Experiments were run with our Kind solver integrating Yices [35],

the Lesar tool provided in the Lustre 4 distribution [49, 65], Rantanplan [40, 41],

Luke [22], and SAL 3.0 [33, 72]. We tried also tried Nbac [54], but we were unable to

run its latest version on our system. So we used instead the version provided with the

Lustre distribution. Unfortunately, this version appears to be unsound as it claimed

to have proved a number of properties for which at least two of the other systems

were able to find a counterexample. For this reason, we will not include Nbac’s results

below.

As SAL does not natively accept Lustre programs for verification, we used a

state of the art translation provided by Michael Whalen at Rockwell Collins (similar

to [83]) in order to compare the systems.

We ran the experiments on a dedicated set of four 3.0 GHz Intel Pentium 4

machines, each with 1 Gb of physical memory, under RedHat Enterprise Linux 4.0.

To increase the number of test problems, we introduced a number of arbitrary

modifications in existing problems, simulating likely user errors that would not be

caught by a standard compiler: incrementing, decrementing, and negating arithmetic

expressions, and switching conjunctions and disjunctions in Boolean expressions. Be-

tween one and three such errors were introduced, the script used picking a random

character position (ignoring comments) and then applying the error to the next ap-
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Table 6.1: Kind: abstraction vs. non-abstraction, invalid problems
Problem Class Size Depth Kind bmc Kind bmc abs
Large Sim. 35 23 1,300.98 1,254.00
Memory I 140 4 6.46 22.92
Memory II 112 5 2.84 7.96
Misc 49 11 0.70 1.89
Protocol 17 12 1.53 4.51
Simulation 94 43 1,708.71 476.66

Totals 447 3,021.22 1,767.94

Note: This table shows runtimes on invalid problems, checked by Kind in BMC
mode, respectively without and with abstraction. Runtimes are in seconds. Size is
the number of problems in each class. In the first table, for each class Depth is the
maximum unrolling (k) needed to generate a (minimal) counterexample for a problem
in this class.

propriate expression in the source.

We grouped together all variants of the same original problem generated this

way and removed any duplicates from the group, considering two variants duplicates

if they produced similar results (same valid / invalid answer and approximately the

same runtimes) for all systems and configurations tried. This was done to prevent

biasing the results against or in favor of any one system.

The final test set had 1047 problems, each with a single property, classifiable

into 6 groups: two groups with problems about memory controllers, one involving

protocols, one based on simulations (often involving vehicles), one based on larger

simulations, with several hundred lines of Lustre code per problem, and one with

mostly toy problems involving counters. Several problems in the large simulations

group contain real number values, which many of the other tools do not support.

We partitioned the problems into: (i) a set of 447 invalid problems, problems
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Table 6.2: Kind: abstraction vs. non-abstraction, valid problems
Problem Class Size Depth Kind ind Kind ind abs
Large Sim. 34 3 8.17 33.49
Memory I 112 3 9.77 24.94
Memory II 65 17 223.26 353.38
Misc 50 11/14 3.66 12.29
Protocol 21 3 1.37 5.07
Simulation 94 12 5.52 25.70

Totals 376 251.75 454.87

Note: This table shows runtimes on valid problems, checked with Kind in (native)
induction mode, with iterative deepening, with and without abstraction. Runtimes
are in seconds. Size is the number of problems in each class. In the first table, for
each class Depth is the maximum unrolling (k) needed to prove the property for a
problem in this class.

Table 6.3: Kind vs. other systems, invalid problems.
Problem Class Size Depth Kind bmc abs SAL bmc
Large Sim. 35 23 1,254.00 2,089.32
Memory I 140 4 22.92 47.07
Memory II 112 5 7.96 28.96
Misc 49 11 1.89 12.07
Protocol 17 12 4.51 7.89
Simulation 94 43 476.66 534.97

Totals 447 1,767.94 2,720.28

Note: This table shows runtimes on invalid problems, checked in BMC mode on Kind
and SAL, with Kind using abstraction. Runtimes are in seconds. Size is the number
of problems in each class. In the first table, for each class Depth, is the maximum
unrolling (k) Kind needed to generate a minimal counterexample for a problem in
this class.
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Table 6.4: Kind vs. other systems, valid problems.
Problem Class Size Dep. Kind ind abs SAL ind Rantanplan
Large Sim. 34 3 33.49 1,824.92 (2) 23,401.33 (26*)
Memory I 101 3 24.94 53.26 327.20
Memory II 76 17 353.38 6,327.44 (7) 12,637.82 (14)
Misc 50 14 12.29 920.71 (1) 1,848.84 (2**)
Protocol 21 3 5.07 10.46 3.22
Simulation 94 12 25.70 34.87 1,816.46 (2)

Totals 376 454.87 9,171.66 (10) 40,034.87

Note: This table shows runtimes data on valid problems, checked with Kind, SAL,
and Rantanplan. Kind used induction mode with iterative deepening (restarts) and
SAL used inductive mode with restarts. Runtimes are in seconds. Size is the number
of problems in each class. In the first table, for each class Depth, is the maximum
unrolling (k) Kind needed to prove the property for a problem in this class. Note 20
of these problems (marked with *) contain reals, which Rantanplan does not accept.
Also Rantanplan returned invalid counterexamples with 2 of these problems (marked
with **).

whose property was disproved with a (real) counterexample; (ii) a set of 376 valid

problems, problems whose property was declared proved by at least one system; (iii)

a set of 224 unsolved problems, which will not be considered below. Of the 823 solved

problems, 20 valid and 18 invalid problems used real valued streams, the rest used

only integer and/or Boolean streams.

The most advanced system in the comparison was sal-inf-bmc, part of the SAL

3.0 toolset [33]. Even if it has an induction mode, strictly speaking, and contrary to

Kind, SAL is not a full-blown induction prover. In induction mode, SAL first performs

a BMC-like test up to a user specified limit l on the number k of unrollings, and then

follows that with a single induction test if the BMC test found no counterexamples.

For a fairer comparison, we replicated this behavior in Kind as well. To simulate the
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checking of problems with an unknown unrolling bound, we ran both SAL and Kind in

an iterative deepening fashion on each problem, starting with l = 0 and repeatedly re-

starting the system with a greater value of l until a conclusive answer was returned. As

mentioned in Section 4.4.3, induction steps are comparatively expensive and become

more so as l grows, so it can be convenient to increase l by more than 1 each time.

We eventually chose to increment l by 3 at each restart because it seemed to produce

the best results for both systems, SAL and Kind.

The overall results can be seen in Tables 6.1, 6.2, 6.3, and 6.4. Tables 6.1 and

6.2 demonstrate the effects of abstraction on Kind, while Tables 6.3 and 6.4 compares

Kind to its main competitors.

Of the two main enhancements to the basic k-induction procedure presented

in this paper, we focus on the evaluation of structural abstraction. The other en-

hancement, path compression, gave increased precision for Kind in induction mode.

In particular, it allowed Kind to determine the validity of 8 problems that were not

solvable by any of the other systems. Hence, all the results presented in this section

are with Kind running with path compression on, unless specified otherwise. The

other input options provided by Kind, and not discussed here, were each given the

same value across the board.

Note that checking for path compression can be a fairly expensive test, espe-

cially on larger problems, and can significantly increase run-times for invalid problems.
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Figure 6.1: Runtimes for Kind with and without abstraction, on hard invalid prob-
lems.

Figure 6.2: Runtimes for Kind with and without abstraction, on hard valid problems.
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6.3.1 Abstraction vs. No Abstraction

When verifying safety properties, it is customary to attempt first a quick run

of bounded model checking, to see if a counterexample can be found. If that fails, the

more expensive full verification check is then performed. Following this practice, it

makes sense to look at Kind’s results when run in bmc mode on the invalid problems

and in interative-deepening inductive more on the valid ones.

Our expectation was that abstraction would not be effective with easy prob-

lems, because of its significant overhead. Hence, the purpose of our evaluation was to

verify whether abstraction is beneficial with complex problems without producing an

unacceptable slowdown with simple ones. Our results partially confirm this thesis.

As a simple complexity measure, let us classify a problem as easy if Kind could

solve it within 2 seconds without abstraction, and hard otherwise.

Of the 447 invalid problems, 404 were easy in this sense and were cumulatively

solved in 32s. Each of them had a counterexample path of length at most 13. The

remaining problems took from 2s to 316s each to solve, for a total of 2989s, with

counterexample lengths ranging from 18 to 43. With abstraction, Kind solved each of

the easy problems within 2s as well, but took 73s overall, with a slowdown factor of

2.3. However, it solved the hard problems in 1694s with an overall speed up factor of

1.8. Runtimes in seconds for the hard invalid problems are plotted in Figure 6.1. As

can be clearly seen, only in one case does abstraction produce a significant slowdown.

In most of the other cases it is instead quite effective, with speed-ups in excess of

300% for several problems.
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In contrast, abstraction was not effective for the valid problems. To start,

almost all of them, 370 over 376, were easy and were solved in a total of 35s without

abstraction, with induction depths (the value of k) of 12 or less. The 6 hard problems

took from 2s to 101s. The total time for them was 217s, with induction depths ranging

from 11 to 17. With abstraction, Kind solved each of the easy problems within 2s

except six (solved in less than 4s), with a total time of 115s and a slowdown factor

of 3.3. It also solved all of the hard problems, but it was actually 1.6 times slower on

them (340s) than Kind without abstraction. A comparison of the behavior with and

without abstraction on the hard problems can be seen in Figure 6.2.

This slowdown seems to be primarily due to refinement at larger depths. Gen-

erally, detecting a spurious counterexample is comparatively simple, but test (4.2)

is generally the most expensive part of the algorithm. Test (4.2’) can be nearly as

expensive, especially once most variables have been refined. As a rule, the valid prob-

lems from this set require nearly all of the variables to be refined in order to prove

a property invariant. As a result, the slowdown is not terribly surprising. Recall

from Section 5.3 that when we detect a spurious counterexample in test (4.2’), we

immediately refine and re-perform test (4.2’). This can nearly double the run-time

for each refinement made in the final step (and there may be several).

Given the restarting used in our comparisons, we also encounter this problem

at lesser depths that are insufficient to prove a definitive result. In these cases, too,

test (4.2’) generally results in spurious counterexamples. So the most expensive test

is generally run a number of additional times in the abstraction case.
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Table 6.5: Performance of various Kind configurations on invalid problems.
Configuration Total time Timeouts
No abstraction 3,021.22 0
Core abstraction 4,027.39 0
Path abstraction 1,769.32 0
Path abstraction, ITE elim. 2,581.74 0
Path abstraction, term. check. 24,061.20 16

Note: This table shows runtimes on invalid problems, checked in BMC mode on
Kind. The second line uses the “core refinement” (see Section 5.3.4), the last 3 use
path refinement, by itself, with ITE elimination, and with the termination check,
respectively.

If there are no restarts, refinement due to failed induction step tests typically

emerge at lower k values, somewhat mitigating the effect of the high-k refinement

process. Instead, however, we often mostly refine ∆′ early in the process. This is

a trade-off where we eliminate the benefits of the abstraction in the inductive base

checks. This can be seen in the next section.

6.3.2 Other Configurations

It is important to note that we ran Kind with restarts in order to provide a

more level playing field with SAL. In actuality, the algorithms covered in previous

chapters are more sophisticated, and Kind performs significantly better in native

mode.

We tested a number of other configurations with Kind. A small sample can be

seen in Tables 6.5 and 6.6, including an alternate abstraction refinement strategy and

ITE elimination from Section 4.4, as well as running Kind in native mode without

restarts. These tables include a number of configuration on invalid problems (in BMC
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Table 6.6: Performance of various Kind configurations on valid problems.
Configuration Total time Timeouts
No abstraction (native) 96.02 0
No abstraction (restart 3) 251.84 0
Core abstraction (native) 366.45 0
Path abstraction (native) 162.32 0
Path abstraction (restart 3) 468.11 0
Path abstraction (skip 3) 128.1 0
Path abstraction, ITE elim. (native) 176.33 0

Note: This table shows runtimes data on valid problems, run with path compression
and termination check. Native indicates Kind was run in native mode (k increases
by 1 each step, no restarts), while restart 3 is in iterative deepening mode, step size
3, as in the rest of this section. skip 3 is run without restarts, with k incremented by
3 each step. ITE elimination is used in the last line.

mode) and on valid problems (with path compression and termination checks).

The intuition concerning refinement behaviors seems to be justified when com-

paring path refinement and core refinement, with the more breadth-oriented core re-

finement performing more poorly (in fact it performs more poorly than no abstraction

at all in both cases, probably due to the added overhead of the refinement combined

with the modified search space it presents to the solver). On invalid problems, the

termination check negates the benefits of running in BMC mode. The reason for

ITE elimination’s poor performance is less clear – in theory it should just reduce the

search space, but it may be altering it in other ways that affect the performance of

the underlying solver.

As mentioned above, abstraction does not seem to be beneficial on valid prob-

lems, and produces significant slowdown. This can be seen in Table 6.6. Not surpris-

ingly, incrementing k by more than 1 (without restarting) offers further improvement
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over normal native mode or restarting mode.

6.3.3 Kind vs. Other Lustre checkers

Lesar [49, 65] is a state-based verification tool included with the Lustre 4

distribution. It is primarily a BDD-based symbolic model checker, with some limited

support for integers through abstraction and a polyhedral library. Due to this, it is

incomplete for non-Boolean problems.

Rantanplan [40, 41] could be considered the closest precursor to Kind since

it is based on k-induction and SMT techniques. As mentioned in related work, its

induction procedure and its SMT support are however less sophisticated, in particular

it does not perform abstraction and refinement. Finally, it does not support programs

with rational streams.

Luke [22] is another k-induction verifier, inspiring much of the work in Rantan-

plan, but it is based on propositional logic and was developed mostly for educational

purposes. It accepts programs with integers by treating them as bounded integers of

a user-specified size.

Since none of these systems have something comparable to Kind’s bmc mode,

we report the results obtained by Kind when run in iterative-deepening induction

mode on both valid and invalid problems. In that mode, Kind solved all of the valid

problems but timed out on 8 of the invalid ones.

We ran Lesar from the distribution in its standard configuration (with the

-poly argument). Lesar solved correctly fewer than 10% of the valid problems, often
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Figure 6.3: Kind vs. Rantanplan and Luke on valid and invalid problems.
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Figure 6.4: Kind vs. SAL, respectively on invalid and valid problems.
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quickly producing an incorrect answer for the rest. Since Lesar is incomplete but

does not return counterexamples, measuring its performance on the invalid problems

is not meaningful.

Rantanplan and Luke were more comparable to Kind. Their performance

against our system is summarized in the scatter plots of Figure 6.3, which show

runtimes in seconds, on a log-log scale. Timeout points also include problems that a

system solved incorrectly due to its incompleteness, or could not solve because they

were out of its scope or caused a runtime error (such as stack overflow).

We tried several of the configurations for Rantanplan suggested in [40], with

generally similar results, and chose one that seemed one of the best overall performers:

deletion filtering with the Pooh checker used in online integration and GLPK as

the offline infeasibility checker. Rantanplan solved 84% of the 823 solved problems,

(against Kind’s 99%) and was overall an order of magnitude slower than Kind on

them. Of the 133 problems not solved by Rantanplan, 38 could not be solved due

to presence of rational streams, 2 produced incorrect counterexamples, 26 caused

run-time errors, and the rest timed out.

Consistently to what observed in [40], Luke performed better than Rantanplan

on the invalid problems. However, it solved only 71% of the 823 solved problems

(mostly finite-state problems), being overall 30% faster than Kind on those. Of the

242 problems not solved by Luke, 38 could not be solved due to presence of rational

streams, 19 produced incorrect counterexamples due to the incompleteness of the

bounded integer support, and the rest timed out.
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6.3.4 Kind vs. SAL

Even if Kind was consistently and significantly better than the available Lustre-

native verifiers, it could be argued that those systems are, for various reasons, not

cutting-edge anymore. We looked then for a publicly available state-of-the-art tool

that could verify safety properties of both finite- and infinite-state reactive systems.

The eventual choice of the SAL toolset [33, 72] was motivated as follows.

The toolset contains a model checker (sal-inf-bmc, hereafter referred to as

SAL) in many ways similar to Kind: it can be run in either bmc or induction mode,

has a form of path compression, is SMT-based, and uses Yices. The main differences

are that it does not use abstraction and is not Lustre-specific. Instead, it uses its own

input language, based on the traditional two-state model. This allowed us to verify

our hypothesis that adapting existing techniques to work directly on a logical model

of Lustre leads to better performance.

To run SAL on Lustre problems we utilized a well-tuned Lustre-to-SAL trans-

lation developed at Rockwell Collins along the lines of the translations described in

[83]. Rockwell Collins has been developing and continually improving translators from

Lustre to various model checkers, including SAL, over several years for the verification

of production-level Lustre models of its avionics software.

We ran SAL and Kind in their respective BMC mode on the invalid problems,

and in iterative-deepening induction mode on the valid ones. Among SAL’s different

command-line configurations only its analogous to path compression (the -acyclic op-

tion) produced any significant differences in overall performance with respect to the
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default configuration. Specifically, enabling path compression was better in induction

mode and worse in bmc mode for SAL. The scatter plots of Figure 6.4 summarize

SAL’s results in those configurations against Kind’s results with path compression

enabled only in induction mode and abstraction enabled in both modes. As the plots

show, the two systems are comparable but Kind’s performance dominates.

Both systems solved all the invalid problems, with Kind being more than 50%

faster overall. Moreover, Kind solved all valid problems while SAL timed out on 10 of

them. On the valid problems solved by both systems, Kind was more than 50% faster.

Interestingly, on the latter problems, Kind without abstraction, a configuration more

closely comparable to SAL, was actually more than 500% faster.

Overall, these results seems to support our hypothesis that a Lustre-specific

k-induction tool offers a performance premium over a translation-based approach.

However, it should be noted that, from inspecting its source code, SAL does not

appear to exploit the advanced features of Yices as much as Kind does (especially

its incremental nature), which might be a significant factor in Kind’s better perfor-

mance.

6.4 Summary

This chapter discussed the Kind system, which implements the ideas presented

in earlier chapters. We also compare its performance with several configurations and

with that of several other systems, with Kind demonstrating improved performance

over the others within our data set.
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We have detailed our translation from the Lustre language into the suitable

logic IL, and then developed induction techniques including the use of path compres-

sion and abstraction / refinement to prove invariant properties. We feel this work

offers an advancement in the state of the art of the formal verification of reactive

systems, and through experimental results we have demonstrated these techniques

offer an improvement over existing ones through our implementation of Kind.
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CHAPTER 7
FUTURE WORK

There are a number of areas we would like to examine more thoroughly within

this framework.

On a purely implementation level, it is possible to expand Kind to allow for

more datatypes, such as bitvectors and bounded integers, as well as support a larger

fraction of Lustre, such as all legal uses of temporal operators.

On the more algorithmic side, path compression could stand to be explored in

more depth. There are several possible ways to determine configuration equivalence.

The method we use, that of comparing state identities is rather naive. In the trans-

lation to IL we preemptively push down all pre terms to only apply to variables, and

then compare all variables so marked. In some cases, at least, we could have fewer

memory variables involved if we flattened terms and did not push down pres. Addi-

tionally there had been some work by Koen Claessen [21] involving a more in-depth

analysis of program behavior in order to create smaller configuration comparisons.

There are also several variations on structural abstraction that could prove

interesting. The structural abstraction we use can be fairly coarse-grained, depend-

ing on the programmer’s style. We effectively refine ∆′ only by entire definitions,

and each definition may be a fairly complicated term involving numerous, possibly

otherwise unrelated, control and data structures. Instead we could introduce inter-

mediate variables for some or all terms we encounter, splitting them into their own

definitions. Two possibilities of particular interest would be the cases of if-then-else
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control structures (and possibly other Boolean expressions), as well as memory terms

containing pre, as above. An example of more control-oriented abstraction would be

rewriting x = if b1 then t1 else t2, with complex subterms t1 and t2, as

x = if b1 then x1 else x2;

x1 = t1;

x2 = t2;

We could then use this more fine-grained division of the program to direct refinement

more intelligently.

Modular verification is a larger-scale form of abstraction, where one proves a

set of properties for a subsection of the overall system, and then uses those properties

as a representation of that subsystem. In our case, we would prove properties about

a given node, and instead of inlining the subnode as we currently do, we would first

instead inline the subnode’s properties, which may be sufficient to prove other, global

properties of the overall program. Only if these are insufficient would we then add

the definitions that make up the node. The expectation is that this will allow us to

prove more complicated properties about larger systems.

Finally, another area of potential interest is to extend our techniques to (some-

times) handle nonlinear arithmetic, specifically allowing trigonometric functions and

multiplication of variables. These types of operations are often used in real-world

embedded systems, though they are not directly supported by most SMT solvers. We

believe that it would be possible to adequately approximate such expressions using

abstraction / refinement techniques. In addition to abstracting stream definitions as
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we do now, or nodes with modular verification, we would also abstract these nonlin-

ear operations, providing more and more accurate approximations as we refine the

abstraction. The basic idea would be similar to using a Taylor series to approximate

the sin function, with each refinement step adding additional terms to the calculation.
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